Advertisement

Logical semantics of modularisation

  • Gerard R. Renardel de Lavalette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 626)

Abstract

An algebra of theories, signatures, renamings and the operations import and export is investigated. A normal form theorem for terms of this algebra is proved. Another algebraic approach and the relation with a fragment of second order logic are also considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Burstall and J.A. Goguen, The semantics of CLEAR, a specification language, in: Abstract software specifications, LNCS 86, Springer-Verlag (1980) 292–332Google Scholar
  2. 2.
    J.A. Bergstra, J. Heering, P. Klint, Module algebra, Journal of the ACM 37 (1990) 335–372Google Scholar
  3. 3.
    H. Ehrig and B. Mahr, Fundamentals of algebraic specification 1, Equations and initial semantics, Springer-Verlag, 1985Google Scholar
  4. 4.
    H. Ehrig and B. Mahr, Fundamentals of algebraic specifications 2, Module specifications and constraints, Springer-Verlag, 1990Google Scholar
  5. 5.
    M.-C. Gaudel, Toward structured algebraic specifications, in: Esprit '85: Status report of continuing work, vol. 1, North-Holland (1986) 493–510Google Scholar
  6. 6.
    L. Henkin, An extension of the Craig-Lyndon interpolation theorem, The Journal of Symbolic Logic 28 (1963) 201–216Google Scholar
  7. 7.
    T.S.E. Maibaum and M.R. Sadler, Axiomatising specification theory, in: H.-J. Kreowski (ed.), Recent trends in data type specification, 3rd Workshop on Theory and Applications of Abstract Data Types, Informatik-Fachberichte 116, Springer-Verlag (1985) 171–177Google Scholar
  8. 8.
    D. Pigozzi, The join of equational theories, Colloquium Mathematicum 30 (1974), 15–25Google Scholar
  9. 9.
    A.M. Pitts, On an interpretation of second order quantification in first order intuitionistic propositional logic, to appear in The Journal of Symbolic LogicGoogle Scholar
  10. 10.
    G.R. Renardel de Lavalette, Modularisation, parametrisation, interpolation, Journal of Information Processing and Cybernetics EIK 25 (1989) 283–292Google Scholar
  11. 11.
    G.R. Renardel de Lavalette, COLD-K2, the Static Kernel of COLD-K, Report RP/mod-89/8, Software Engineering Research Centre, Utrecht, 1989Google Scholar
  12. 12.
    P.H. Rodenburg, On the ω-completeness of a fragment of module algebra, manuscript (1990)Google Scholar
  13. 13.
    P.H. Rodenburg, A simple algebraic proof of the equational interpolation theorem, Algebra Universalis 28 (1991) 48–51Google Scholar
  14. 14.
    P.H. Rodenburg, Interpolation in conditional equational logic, Fundamenta Informaticae 15 (1991) 80–85Google Scholar
  15. 15.
    P.H. Rodenburg, Interpolation in equational logic, Report P9201, Programming Research Group, University of Amsterdam, 1992Google Scholar
  16. 16.
    M. Wirsing, Structured algebraic specifications: a kernel language, Habilitationsschrift, Institut für Informatik, Technische Universität, München, 1983Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Gerard R. Renardel de Lavalette
    • 1
  1. 1.Department of Computing ScienceUniversity of GroningenAV GroningenThe Netherlands

Personalised recommendations