Equational specification of abstract types and combinators

  • Karl Meinke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 626)


We introduce an algebraic framework for the equational specification of algebras of types and combinators. A categorical semantics for type specifications is given based on cofibrations of categories of algebras. It is shown that each equational type specification admits an initial model semantics, and we present complete inference systems for type assignments and equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Barr and C. Wells, Category Theory for Computing Science, Prentice Hall, Englewood Cliffs, 1990.Google Scholar
  2. H.B. Curry and R. Feys, Combinatory Logic, Vol. I, North Holland, Amsterdam, 1958.Google Scholar
  3. H.B. Curry, J.R. Hindley and J.P. Seldin, Combinatory Logic, Vol. II, North Holland, Amsterdam, 1972.Google Scholar
  4. J-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge University Press, Cambridge, 1989.Google Scholar
  5. J.R. Hindley and J.P. Seldin, Introduction to Combinators and λ-Calculus, Cambridge University Press, Cambridge, 1986.Google Scholar
  6. K. Meinke, Universal algebra in higher types, Report CSR 12-90, Dept. of Computer Science, University College Swansea, to appear in Theoretical Computer Science, Volume 99, 1990.Google Scholar
  7. K. Meinke, Subdirect representation of higher type algebras, to appear in K. Meinke and J.V. Tucker (eds), Many-Sorted Logic and its Applications, John Wiley, 1992.Google Scholar
  8. K. Meinke, A recursive second order initial algebra specification of primitive recursion, Report CSR 8-91, Department of Computer Science, University College of Swansea,1991.Google Scholar
  9. K. Meinke and J.V. Tucker, Universal algebra, to appear in: S. Abramsky, D. Gabbay and T.S.E. Maibaum, (eds) Handbook of Logic in Computer Science, Oxford University Press, Oxford, 1992.Google Scholar
  10. K. Meinke and E. Wagner, Algebraic specification of types and combinators, IBM research report, in preparation, 1992.Google Scholar
  11. J.C. Mitchell, Type systems for programming languages, in: J. van Leeuwen (ed), Handbook of Theoretical Computer Science, Volume B, Elsevier, Amsterdam, 1990.Google Scholar
  12. B. Möller, Higher-order algebraic specifications, Facultät für Mathematik und Informatik, Technische Universität München, Habilitationsschrift, 1987b.Google Scholar
  13. M. Nivat, J. Reynolds (eds), Algebraic Methods in Semantics, Cambridge University Press, Cambridge, 1985.Google Scholar
  14. A. Poigné, On specifications, theories and models with higher types, Information and Control 68, (1986) 1–46.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Karl Meinke
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity College SwanseaSingleton ParkUK

Personalised recommendations