Sequential and parallel algorithms on compactly represented chordal and strongly chordal graphs

  • Elias Dahlhaus
Parallel Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1200)


For a given ordered graph (G, <), we consider the smallest (strongly) chordal graph G′ containing G with < as a (strongly) perfect elimination ordering. We call (G, <) a compact representation of G′. We show that the computation of a depth-first search tree and a breadth-first search tree can be done in polylogarithmic time with a linear processor number with respect to the size of the compact representation in parallel. We consider also the problems to find a maximum clique and to develop a data structure extension that allows an adjacency query in polylogarithmic time.


Algorithms and Data Structures Parallel Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Abrahamson, N. Dadoun, D. Kirkpatrick, T. Przyticka, A Simple Parallel Tree Contraction Algorithm, Journal of Algorithms 10 (1989), pp. 287–302.CrossRefGoogle Scholar
  2. 2.
    M. Atallah, M. Goodrich, S.R. Kosaraju, Parallel Algorithms for Evaluating Sequences of Set Manipulation Operations, Journal of the ACM 41 (1994), pp. 1049–1085.CrossRefGoogle Scholar
  3. 3.
    P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete Mathematics 9 (1974), pp. 205–212.CrossRefGoogle Scholar
  4. 4.
    E. Dahlhaus, Fast parallel algorithm for the single link heuristics of hierarchical clustering, Proceedings of the fourth IEEE Symposium on Parallel and Distributed Processing (1992), pp. 184–186.Google Scholar
  5. 5.
    E. Dahlhaus, P. Damaschke, The Complexity of Domination Problems in Chordal and Strongly Chordal Graphs, Discrete Applied Mathematics 52 (1994), pp. 261–273.CrossRefGoogle Scholar
  6. 6.
    E. Dahlhaus, A fast parallel algorithm to compute Steiner-trees in strongly chordal graphs, Discrete Applied Mathematics 51 (1994), pp. 47–61.CrossRefGoogle Scholar
  7. 7.
    E. Dahlhaus, Efficient Parallel Algorithms on Chordal Graphs with a Sparse Tree Representation, Proceedings of the 27-th Annual Hawaii International Conference on System Sciences, Vol. II (1994), pp. 150–158.Google Scholar
  8. 8.
    R. Fagin, Degrees of Acyclicity and Relational Database Schemes, Journal of the ACM 30 (1983), pp. 514–550.CrossRefGoogle Scholar
  9. 9.
    M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Mathematics 43 (1983), pp. 173–189.CrossRefGoogle Scholar
  10. 10.
    M. Farber, Domination, Independent Domination and Duality in Strongly Chordal Graphs, Discrete Applied Mathematics 7(1984), pp. 115–130.CrossRefGoogle Scholar
  11. 11.
    H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. System Sci., 30 (1984), pp. 209–221.CrossRefGoogle Scholar
  12. 12.
    F. Gavril, The Intersection Graphs of Subtrees in Trees Are Exactly the Chordal Graphs, Journal of Cobinatorial Theory Series B, vol. 16(1974), pp. 47–56.CrossRefGoogle Scholar
  13. 13.
    J. Gilbert, H. Hafsteinsson, Parallel Solution of Sparse Linear Systems, SWAT 88 (1988), LNCS 318, pp. 145–153.Google Scholar
  14. 14.
    P. Klein, Efficient Parallel Algorithms for Chordal Graphs, 29. IEEE-FOCS (1988), pp. 150–161.Google Scholar
  15. 15.
    D. Rose, Triangulated Graphs and the Elimination Process, Journal of Mathematical Analysis and Applications 32 (1970), pp. 597–609.CrossRefGoogle Scholar
  16. 16.
    Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algorithms 3 (1982), pp. 57–67.CrossRefGoogle Scholar
  17. 17.
    J. Spinrad, Nonredundant 1's in Г-free Matrices, SIAM Journal on Discrete Mathematics 8 (1995), pp. 251–257.CrossRefGoogle Scholar
  18. 18.
    R. Tarjan, M. Yannakakis, Simple Linear Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM Journal on Computing 13 (1984), pp. 566–579. Addendum: SIAM Journal on Computing 14 (1985), pp. 254–255.CrossRefGoogle Scholar
  19. 19.
    K. White, M. Farber, W. Pulleyblank, Steiner Trees, Connected Domination, and Strongly Chordal Graphs, Networks 15 (1985), pp. 109–124.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Elias Dahlhaus
    • 1
  1. 1.Department of Computer ScienceUniversity of BonnBonnGermany

Personalised recommendations