Cryptography based on transcendental numbers

  • Josef Pieprzyk
  • Hossein Ghodosi
  • Chris Charnes
  • Rei Safavi-Naini
Session 3: Encryption and Cryptographic Functions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1172)


We investigate irrational numbers as a source of pseudorandom bits. We suggest two secure pseudorandom bit generators based on transcendental numbers. These two classes of transcendentals are applied to construct novel encryption algorithms. Properties of the encryption algorithms are studied and preliminary cryptanalysis is given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Baker. Transcendental Number Theory. Cambridge University Press, 1975.Google Scholar
  2. 2.
    M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing, 13:850–864, November 1984.Google Scholar
  3. 3.
    E. Borel. Lecons sur la Theorie des Fonctions. 2nd Ed, 1914,pp.182–216.Google Scholar
  4. 4.
    R.L. Burden and J.D. Faires. Numerical Analysis. PWS Publishing Company, Boston, 1993.Google Scholar
  5. 5.
    H. Feistel. Cryptography and computer privacy. Scientific American, 228(5):15–23, 1973.Google Scholar
  6. 6.
    M. R. Garey and D. S. Johnson. Computers and Intractability A Guide to the Theory of NP-completeness. W.H. Freeman and Company, 1979.Google Scholar
  7. 7.
    R. Kannan, A.K. Lenstra, and L. Lovász. Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers. Mathematics of Computation, 50:235–250, 1988.Google Scholar
  8. 8.
    D.E. Knuth. The Art of Computer Programming, Volume 2. Addison-Wesley, 1981.Google Scholar
  9. 9.
    H.W. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:513–534, 1982.Google Scholar
  10. 10.
    R.L. Rivest Cryptography Handbook of Theoretical Computer Science, Chap. 13 Edited by J. van Leeuwen Elsevier Science Publishers, 1990.Google Scholar
  11. 11.
    A. Schönhage. The fundamental theorem of algebra in terms of computational complexity. Preliminary report, Mathematisches Institut der UniversitÄt Tübigen, August 1982.Google Scholar
  12. 12.
    A. Shamir. On the generation of cryptographically strong pseudo-random sequences. ACM Transactions on Computer Systems, 1(1):38–44, 1983.Google Scholar
  13. 13.
    J.S. Vandergraft. Introduction to Numerical Computations. Academic Press, New York, 1983.Google Scholar
  14. 14.
    Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings of the 23rd IEEE Symposium on Foundation of Computer Science, pages 80–91, New York, 1982. IEEE.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Josef Pieprzyk
    • 1
  • Hossein Ghodosi
    • 1
  • Chris Charnes
    • 1
  • Rei Safavi-Naini
    • 1
  1. 1.Department of Computer ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations