On the logic of hypergraphs

  • A. Kolany
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 713)


A notion of satisfiability on hypergraphs is introduced and some existence problems are shown to be instances of the satisfiability on appropriate hypergraphs. Then a hypergraph based interpretation of propositional connectives is defined. This interpretation unexpectably turns out to be adequate for the Intuitionistic Propositional Calculus.

At the end some possible directions of research in this field are suggested.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abian, A.: Generalized Completeness Theorem and Solvability of Systems of Boolean Equations. Zeitschr. für Math. Logik. 16 (1970), 263–264Google Scholar
  2. 2.
    Berge, C.: Hypergraphs. North Holland Mathematical Library. 45(1989)Google Scholar
  3. 3.
    Cowen, R.H.: Two hypergraph theorems equivalent to BPI. Notre Dame Journal of Formal Logic. 31 (1990), 232–240Google Scholar
  4. 4.
    Cowen, R.H.: Hypergraph satisfiability. Reports of Math. Logic. 25(1992), 113–117Google Scholar
  5. 5.
    Cowen, R.H.: Generalizing König's Infinity Lemma. Notre Dame Journal of Formal Logic. 38(1977), 243–247Google Scholar
  6. 6.
    Halmos, P.R., Vaughan, H.E.: The marriage problem. American Journal of Mathematics. 72(1949), 214–215Google Scholar
  7. 7.
    Howard, P. E.: Binary Consistent Choices on Pairs and a Generalization of Königs Infinity Lemma. Fund. Math. 121(1984), 17–19Google Scholar
  8. 8.
    Jech, T.: The Axiom of Choice. North Holland. (1973)Google Scholar
  9. 9.
    Levy, A.: Remarks on a paper by Mycielski. Acta Math. 14(1963), 125–130Google Scholar
  10. 10.
    Los, J., Ryll-Nardzewski, C.: On Application of Tychonoff's Theorem in Mathematical Proofs Fund. Math. 38(1951), 233–237Google Scholar
  11. 11.
    Rasiowa, H., Sikorski, R.: Mathematics of Metamathematics. Monografie Matematyczne PAN. 41 PWN, Warszawa 1963Google Scholar
  12. 12.
    Troelstra, A.S., van Dallen, D.: Constructivism in Mathematics. Studia in Logic and Foundations of Mathematics. 121 North Holland (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. Kolany
    • 1
  1. 1.Institute of MathematicsSilesian UniversityKatowicePoland

Personalised recommendations