The inverse of fitting's functional

  • Alberto Bottoni
  • Giorgio Levi
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 713)


The evaluation of a goal for a logic program can be viewed as the search for an answer, written in the constraints language, that correctly implies the goal. We propose a small set of inference rules, correct w.r.t. the completion of a program and the Clark equational theory, which is strong enough to compute a complete set of answers for extended programs over the Herbrand constraint system. The basic step, the unfolding, is shown to realize, in a syntactic way, the inverse of what Fitting's functional computes in the semantic one. Then, using the fundamental result of Kunen, we can prove the completeness of our schema for the three valued consequences of the completion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bottoni. La riscrittura completa è l'inverso del funzionale di Fitting. Master's thesis, Dipartimento di Informatica, Università di Pisa, 1992. In italian.Google Scholar
  2. 2.
    A. Bottoni. CET Standard Forms. Technical report, Dipartimento di Informatica, Università di Pisa, 1993.Google Scholar
  3. 3.
    A. Bottoni. Complete Constraints Extraction for First Order CLP. Technical report, Dipartimento di Matematica Pura ed Applicata, Università di Padova, 1993.Google Scholar
  4. 4.
    P. Bruscoli, F. Levi, G. Levi, and M. C. Meo. Compilative constructive negation in CLP. Technical report, Dipartimento di Informatica, Università di Pisa, 1992.Google Scholar
  5. 5.
    D. Chan. Constructive Negation Based on the Completed Database. In R. A. Kowalski and K. A. Bowen, editors, Proc. Fifth Int'l Conf. on Logic Programming, pages 111–125. The MIT Press, Cambridge, Mass., 1988.Google Scholar
  6. 6.
    D. Chan. An Extension of Constructive Negation and its Application in Coroutining. In E. Lusk and R. Overbeek, editors, Proc. North American Conf. on Logic Programming'89, pages 477–493. The MIT Press, Cambridge, Mass., 1989.Google Scholar
  7. 7.
    K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.Google Scholar
  8. 8.
    M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming, 2:295–312, 1985.Google Scholar
  9. 9.
    K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:289–308, 1987.Google Scholar
  10. 10.
    K. Kunen. Signed Data Dependencies in Logic Programs. Journal of Logic Programming, 7(3):231–245, 1989.Google Scholar
  11. 11.
    J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 587–625. Morgan Kaufmann, Los Altos, Ca., 1988.Google Scholar
  12. 12.
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.Google Scholar
  13. 13.
    J. W. Lloyd and R. W. Topor. Making PROLOG More Expressive. Journal of Logic Programming, 1(3):225–240, 1984.Google Scholar
  14. 14.
    D. Lugiez. A deduction procedure for first order programs. In G. Levi and M. Martelli, editors, Proc. Sixth Int'l Conf. on Logic Programming, pages 585–600. The MIT Press, Cambridge, Mass., 1989.Google Scholar
  15. 15.
    J. A. Robinson. Beyond LOGLISP: combining functional and relational programming in a reduction setting. In D. Michie and Hayes-Michie, editors, Machine Intelligence 11. Oxford University Press, 1985.Google Scholar
  16. 16.
    T. Sato, F. Motoyoshi. A Complete Top-down Interpreter for First Order Programs. In V. Saraswat and K. Ueda, editors, Proc. International Symposium on Logic Programming'91, pages 35–53. The MIT Press, Cambridge, Mass., 1991.Google Scholar
  17. 17.
    R. F. Stärk. A Complete Axiomatization of the Three valued Completion of Logic Programs. Journal of Logic and Computation, 1(6):811–834, 1991.Google Scholar
  18. 18.
    P. J. Stuckey. Constructive Negation for Constraint Logic Programming. In Proc. Sixth IEEE Symp. on Logic In Computer Science. IEEE Comp. Soc. Press, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Alberto Bottoni
    • 1
  • Giorgio Levi
    • 2
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità di PadovaPadovaItalia
  2. 2.Dipartimento di InformaticaUniveristà di PisaPisaItalia

Personalised recommendations