Advertisement

Superposition with simplification as a decision procedure for the monadic class with equality

  • Leo Bachmair
  • Harald Ganzinger
  • Uwe Waldmann
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 713)

Abstract

We show that superposition, a restricted form of paramodulation, can be combined with specifically designed simplification rules such that it becomes a decision procedure for the monadic class with equality. The completeness of the method follows from a general notion of redundancy for clauses and superposition inferences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ackermann, 1954. Solvable Cases of the Decision Problem. North-Holland, Amsterdam.Google Scholar
  2. A. Aiken and E. L. Wimmers, 1992. Solving Systems of Set Constraints (Extended Abstract). In Seventh Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California, USA, pp. 329–340. IEEE Computer Society Press.Google Scholar
  3. L. Bachmair and H. Ganzinger, 1990. On Restrictions of Ordered Paramodulation with Simplification. In M. E. Stickel, editor, 10th International Conference on Automated Deduction, Kaiserslautern, FRG, LNAI 449, pp. 427–441. Springer-Verlag.Google Scholar
  4. L. Bachmair and H. Ganzinger, 1991. Rewrite-Based Equational Theorem Proving With Selection and Simplification. Technical Report MPI-I-91-208, Max-Planck-Institut für Informatik, Saarbrücken. Revised version to appear in Journal of Logic and Computation.Google Scholar
  5. L. Bachmair, H. Ganzinger and U. Waldmann, 1992. Set Constraints are the Monadic Class. Technical Report MPI-I-92-240, Max-Planck-Institut für Informatik, Saarbrücken. Revised version to appear in Eighth Annual IEEE Symposium on Logic in Computer Science, Montreal, Canada, 1993.Google Scholar
  6. H. Comon, M. Haberstrau and J.-P. Jouannaud, 1992. Decidable Problems in Shallow Equational Theories (Extended Abstract). In Seventh Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California, USA, pp. 255–265. IEEE Computer Society Press.Google Scholar
  7. N. Dershowitz and J.-P. Jouannaud, 1990. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 6, pp. 243–320. Elsevier Science Publishers B.V., Amsterdam, New York, Oxford, Tokyo.Google Scholar
  8. B. Dreben and W.D. Goldfarb, 1979. The Decision Problem. Solvable Classes of Quantificational Formulas. Addison-Wesley Publishing Company, Inc.Google Scholar
  9. C. Fermüller, A. Leitsch, T. Tammet and N. Zamov, 1992. Resolution Methods for the Decision Problem. To appear.Google Scholar
  10. C. Fermüller and G. Salzer, 1993. Ordered Paramodulation and Resolution as Decision Procedure. Submitted.Google Scholar
  11. N. Heintze and J. Jaffar, 1991. Set-based program analysis. Draft manuscript.Google Scholar
  12. W. H. Joyner Jr., 1976. Resolution Strategies as Decision Procedures. Journal of the ACM, Vol. 23, No. 3, pp. 398–417.Google Scholar
  13. H. R. Lewis, 1980. Complexity Results for Classes of Quantificational Formulas. Journal of Computer and System Sciences, Vol. 21, pp. 317–353.Google Scholar
  14. L. Löwenheim, 1915. Über Möglichkeiten im Relativkalkül. Math. Annalen, Vol. 76, pp. 228–251.Google Scholar
  15. R. Nieuwenhuis and A. Rubio, 1992. Theorem Proving with Ordering Constrained Clauses. In D. Kapur, editor, 11th International Conference on Automated Deduction, Saratoga Springs, New York, USA, LNAI 607, pp. 477–491. Springer-Verlag.Google Scholar
  16. P. Nivela and R. Nieuwenhuis, 1993. Practical results on saturation of full first-order clauses: Experiments with the Saturate system. Submitted.Google Scholar
  17. M. Rusinowitch, 1989. Démonstration Automatique: Techniques de Réécriture. Intereditions, Paris, France.Google Scholar
  18. M. Rusinowitch, 1991. Theorem proving with resolution and superposition: An extension of the Knuth and Bendix completion procedure as a complete set of inference rules. Journal of Symbolic Computation, Vol. 11.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Leo Bachmair
    • 1
  • Harald Ganzinger
    • 2
  • Uwe Waldmann
    • 2
  1. 1.Department of Computer ScienceSUNY at Stony BrookStony BrookUSA
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations