Decision complexity of variants of propositional dynamic logic

  • M. K. Valiev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 88)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischer M.J., Ladner R.E. Propositional modal logic of programs. Proc. 9th ACM Symp. on Theory of Computing, 1977, 286–294.Google Scholar
  2. 2.
    Pratt V.R. A near-optimal method for reasoning about action. MIT/LCS/TM-113, 1978.Google Scholar
  3. 3.
    Valiev M.K. On axiomatization of deterministic propositional dynamic logic. Lecture Notes in Computer Science, 74, 1979, 482–491.Google Scholar
  4. 4.
    Parikh R. A decidability result for a second order process logic. Proc. 19th Symp. on Found. of Computer Science, 1978, 177–183.Google Scholar
  5. 5.
    Salwicki A. Formalized algorithmic languages. Bull.Acad.Pol.Sci., 18 (1970), No 5., 227–232.Google Scholar
  6. 6.
    Pratt V.R. A practical decision method for propositional dynamic logic. Proc. 10th ACM Symp. on Theory of Computing, 1978, 326–337.Google Scholar
  7. 7.
    Kimura T. An algebraic system for process structuring and interprocess communication. Proc. 8th ACM Symp. on Theory of Computing, 1976, 92–100.Google Scholar
  8. 8.
    Mazurkiewicz A. Parallel recursive program schemes. Lecture Notes in Computer Science, 32 (1975), 75–87.Google Scholar
  9. 9.
    Abrahamson K. Modal logic of concunrent nondeterministic programs. Lecture Notes in COmputer Science, 70, 1979, 21–33.Google Scholar
  10. 10.
    Ginsburg S. The mathematical theory of context-free languages. Mc Graw-Hill, New York, 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • M. K. Valiev
    • 1
  1. 1.Institute of MathematicsNovosibirsk 90USSR

Personalised recommendations