A theoretical basis for the systematic proof method

  • Wolfgang Bibel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 88)


All redundancies are removed from derivations in a Gentzen-like formal system of first-order logic. The resulting skeleton derivations are characterized in terms of the formulas to be derived. This provides the formal basis for a powerful proof procedure developed earlier by the author.


Theorem Prove Generalize Derivation Derivation Tree Proof Procedure Proof Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.B. Andrews, Refutations by matings, IEEE Transactions on Computer C-25 (1976) 801–807.Google Scholar
  2. [2]
    P.B. Andrews, Theorem Proving via General Matings, Journal of the ACM (to appear).Google Scholar
  3. [3]
    W. Bibel, An approach to a systematic theorem proving procedure in first-order logic, Computing 12 (1974) 43–55.Google Scholar
  4. [4]
    W. Bibel, Maschinelles Beweisen, Jahrbuch Überblicke Mathematik (Bibliographisches Institut, Mannheim, 1976) 115–142.Google Scholar
  5. [5]
    W. Bibel, Tautology testing with a generalized matrix reduction method, Theoretical Computer Science 8 (1979), 31–44.Google Scholar
  6. [6]
    W. Bibel, On matrices with connections, Bericht 79, Universität Karlsruhe (1979), submitted to JACM.Google Scholar
  7. [7]
    W. Bibel, A comparative study of several proof procedures, Proc. AISB-80 (1980).Google Scholar
  8. [8]
    W. Bibel, Syntax-directed, semantics-supported program synthesis, Artificial Intelligence Journal (to appear).Google Scholar
  9. [9]
    W. Bibel and J. Schreiber, Proof search in a Gentzen-like system of first-order logic, Proc. Int. Computing Symposium (North-Holland, Amsterdam, 1975) 205–212. Also contained in: W. Bibel, Programmieren in der Sprache der Prädikatenlogik, Habilitationsarbeit (abgelehnt), Technische Universität München (1975).Google Scholar
  10. [10]
    W.W. Bledsoe, Non-resolution theorem proving, Artificial Intelligence 9 (1977) 1–35.Google Scholar
  11. [11]
    J. Friedrich, Ein systematischer Algorithmus zum Beweisen von Theoremen in einem Prädikatenkalkül erster Ordnung, Diplomarbeit, Techn. Univ. München (1973).Google Scholar
  12. [12]
    G. Gentzen, Untersuchungen über das logische Schließen I, Mathemat. Zeitschrift 39, (1935) 176–210.Google Scholar
  13. [13]
    C.A. Goad, Proofs as descriptions of programs, Proc. CADE-5, Springer (to appear).Google Scholar
  14. [14]
    J. Herbrand, Recherches sur la Theorie de la Demonstration, Travaux de la Societe des Sciences et des Lettres de Varsovie, Classe III sciences mathematiques et physiques, 33 (1930).Google Scholar
  15. [15]
    G. Huet, Résolution d'équations dans des languages d'ordres 1,2,...,ω, Thèse de doctorat d'état, Université Paris VII (1976).Google Scholar
  16. [16]
    G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems, Rapport Laboria no 250, IRIA-LABORIA, Domaine de Voluceau, 78150 Le Chesnay, France (1977).Google Scholar
  17. [17]
    R. Kowalski, Algorithm = logic + control, Comm. of the ACM 22 (1979) 424–436.Google Scholar
  18. [18]
    Z. Manna, R. Waldinger, A deductive approach to program synthesis, Proc. IJCAI-79 (1979) 542–551.Google Scholar
  19. [19]
    S.J. Maslow, The inverse method for establishing deducibility for logical calculi, Proc. Steklov Inst. Math. 98 (1968).Google Scholar
  20. [20]
    D. Prawitz, An improved proof procedure, Theoria 26 (1960) 102–139.Google Scholar
  21. [21]
    J.A. Robinson, Logic: form and function, Edinburgh University Press (1979).Google Scholar
  22. [22]
    M. Sato, Towards a mathematical theory of program synthesis, Proc. IJCAI-79 (1979) 757–762.Google Scholar
  23. [23]
    J. Schreiber, Vergleichende qualitative und quantitative Untersuchungen von Beweisverfahren, Bericht Nr. 7411, Technische Universität München (1974).Google Scholar
  24. [24]
    K. Schütte, Proof theory, Springer Verlag (Berlin, 1977).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Wolfgang Bibel
    • 1
  1. 1.Technische Universität MünchenGermany

Personalised recommendations