On some discrete optimization problems in mass storage systems

  • C. K. Wong
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 88)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Coffman, Jr. and P. J. Denning, Operating Systems Theory, Prentice-Hall, New Jersey, 1973.Google Scholar
  2. 2.
    J. R. Bitner and C. K. Wong, Optimal and near-optimal scheduling algorithms for batched processing in linear storage, SIAM J. COMPUT, Vol. 8, No. 4, (1979), pp. 479–498.Google Scholar
  3. 3.
    D. D. Grossman and H. F. Silverman, Placement of records on a secondary storage device to minimize access time, J. Assoc. Comput. Mach., 20 (1973), pp. 429–438.Google Scholar
  4. 4.
    A. C. McKellar and C. K. Wong, Dynamic placement of records in linear storage. J. Assoc. Comput. Mach., 25 (1978), pp. 421–434.Google Scholar
  5. 5.
    R. M. Karp, A. C. McKellar, and C. K. Wong, Near-optimal solutions to a 2-dimensional placement problem, SIAM J. Computing, Vol. 4, No. 3, (1975), pp. 271–286.Google Scholar
  6. 6.
    P. C. Yue and C. K. Wong, Near-optimal heuristics for an assignment problem in mass storage. Internat. J. Computer and Information Sciences, Vol. 4, No. 4, (1975), pp. 281–294.Google Scholar
  7. 7.
    D. T. Lee and C. K. Wong, Voronoi diagrams in L1, (L) metrics with 2-dimensional storage applications, Vol. 9, No. 1, (1980), pp. 200–211.Google Scholar
  8. 8.
    A. K. Chandra, Hsu Chang and C. K. Wong, Two-dimensional magnetic bubble memory, U.S. Patent No. 4,174,538, (1979).Google Scholar
  9. 9.
    G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, England, 1952.Google Scholar
  10. 10.
    P. P. Bergmans, Minimizing expected travel time on geometrical patterns by optimal probability rearrangements, Information and Control, 20 (1972), pp. 331–350.Google Scholar
  11. 11.
    A. W. Marshall, I. Olkin, and F. Proschan, Monotonicity of ratios of means and other applications of majorization. In Inequalities, Shisha (Ed.), Academic Press, New York, 1967.Google Scholar
  12. 12.
    A. Ostrowski, Sur quelques applications des fonctions conveses et convaves au sens de I. Schur, J. Math. Pures Appl. 31 (1952), pp. 253–292.Google Scholar
  13. 13.
    I. Schur, Uber ein Klasse von Mittlebildungen mit Anwendungen auf die Determinatentheorie. Sitzber. Berl. Math. Ges. 22 (1923), pp. 9–20.Google Scholar
  14. 14.
    C. K. Wong and P. C. Yue, A majorization theorem for the number of distinct outcomes in N independent trials, Discrete Math. 6 (1973), pp. 391–398.Google Scholar
  15. 15.
    P. C. Yue and C. K. Wong, On the optimality of the probability ranking scheme in storage application, J. Assoc. Comput. Mach., 20 (1973), pp. 624–633.Google Scholar
  16. 16.
    D. Blackwell, Discrete Dynamic Programming, Annals of Mathematical Statistics, 33 (1962), pp. 719–726.Google Scholar
  17. 17.
    C. K. Wong and K. C. Chu, Average distances in Lp disks, SIAM Review, 19 (1977), pp. 320–324.Google Scholar
  18. 18.
    D. Coppersmith, D. T. Lee and C. K. Wong, An elementary proof of non-existence of isometries between Lpk and Lqk, IBM J. of Res. Devel., Vol. 23, No. 6, (1979), pp. 696–699.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • C. K. Wong
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsU.S.A.

Personalised recommendations