Is first order contained in an initial segment of PTIME?

  • Alexei P. Stolboushkin
  • Michael A. Taitslin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 933)


By “initial segments of P” we mean classes DTime(n k ). The question of whether for any fixed signature the first-order definable predicates in finite models of this signature are all in an initial segment of P is shown to be related to other intriguing open problems in complexity theory and logic, like P=PSpace.

The second part of the paper strengthens the result of Ph. Kolaitis of logical definability of unambiguous computations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman, “The design and analysis of computer algorithms”, Addison-Wesley Publ. Co., 1974, 1–470.Google Scholar
  2. 2.
    Aho, Alfred V., and Jeffrey D. Ullman, Universality of data retrieval languages, in: “Proceedings of the 6th ACM Symp. on Principles of Programming Languages (POPL)”, 1979, 110–117.Google Scholar
  3. 3.
    Behmann, Heinrich, Beiträge zur Algebra der Logic, insbesondere zur Entscheidungproblem, Math. Ann., 86, 1922, 163–229.MathSciNetGoogle Scholar
  4. 4.
    Chandra, Ashok K., and David Harel, Structure and complexity of relational queries, J. Comput. Syst. Sci., 25, 1980, 156–178.CrossRefGoogle Scholar
  5. 5.
    Grohe, Martin, Bounded-arity hierarchies in fixed-point logics, in: “Proceedings of CSL '93. 1993 Annual Conference of the European Association for Computer Science Logic, Swansea, UK, 13–17 Sept. 1993)” (Borger, E.; Gurevich, Y.; Meinke, K., Eds.), Springer-Verlag: Berlin, 1994. 150–164.Google Scholar
  6. 6.
    Gurevich, Yuri, Algebras of feasible functions, in: “24th Symp. on Foundations of Computer Science (FOCS)”, IEEE Computer Society Press, 1983, 210–214.Google Scholar
  7. 7.
    Gurevich, Yuri, Logic and the challenge of computer science, in: “Current Trends in Theoretical Computer Science” (Egon Börger, Ed.), Computer Science Press: Rockville, Md., 1987, 1–57.Google Scholar
  8. 8.
    Enderton, Herbert B., “A mathematical introduction to logic”, Academic Press: New York, 1972.Google Scholar
  9. 9.
    Ershov, Yuri L., Igor A. Lavrov, Asan D. Taimanov, and Michael A. Taitslin, Elementary theories, Russian Mathematical Surveys, 20:4, 1965, 35–105.CrossRefGoogle Scholar
  10. 10.
    Hennie, F.C., and R.E. Stearns, Two tape simulation of multitape machines, J. ACM, 13:4, 533–546.Google Scholar
  11. 11.
    Immerman, Neil, Relational queries computable in polynomial time, in: “14th ACM Symp. on Theory of Computing (STOC)”, ACM, 1982, 147–152.Google Scholar
  12. 12.
    Immerman, Neil, Languages that capture complexity classes, S1AM J. Computing, 16, 1987, 760–778.CrossRefGoogle Scholar
  13. 13.
    Kolaitis, Phokion G., Implicit definability on finite structures and unambiguous computations, in: “5th IEEE Annu. Symp. on Logic in Computer Science (LICS)”, IEEE Computer Society Press: Los Alamitos, CA, 1990, 168–180.Google Scholar
  14. 14.
    Livchak, Alexander B., The relational model for process control, in: “Automatic Documentation and Mathematical Linguistics 4”, Moscow, 1983, 27–29.Google Scholar
  15. 15.
    Maltsev, Anatoly I., Regular products of models, Izv. Acad. Nauk. SSSR, Ser. Mat., 23, 1959, 489–502.Google Scholar
  16. 16.
    Moschovakis, Yiannis N., “Elementary induction on abstract structures”, North-Holland/Elsevier: Amsterdam/New York, 1974, 218pp.Google Scholar
  17. 17.
    Sazonov, Valdimir Yu., Polinomial computability and recursivity in finite domains, Elektronische Informationsverarbeitung und Kybernetik, 16, 1980, 319–323.Google Scholar
  18. 18.
    Stolboushkin, Alexei P., and Michael A. Taitslin, Dynamic logics, in: “Cybernetics and Computing Technology” (V.A. Mel'nikov, Ed.), Moscow: Nauka, 1986, 180–230.Google Scholar
  19. 19.
    Valiant, L., Relative complexity of checking and evaluating, Information Processing, 5, 1976, 20–23.CrossRefGoogle Scholar
  20. 20.
    Vardi, Moshe Y., Complexity of relational query languages, in: “14th ACM Symp. on Theory of Computing”, ACM, 1982, 137–146.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Alexei P. Stolboushkin
    • 1
  • Michael A. Taitslin
    • 2
  1. 1.Department of MathematicsUCLALos Angeles
  2. 2.Department of Computer ScienceTver State UniversityTverRussia

Personalised recommendations