TANGRAM-II: A performability modeling environment tool

  • Rosa M. L. R. Carmo
  • Luiz R. de Carvalho
  • Edmundo de Souza e Silva
  • Morganna C. Diniz
  • Richard R. R. Muntz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1245)


TANGRAM-II is a modeling environment tool developed for research and educational purposes that provides a flexible user interface to describe computer and communication system models. It has a sophisticated graphic interface based on the public domain software package TGIF (Tangram Graphic Interface Facility) and an object oriented description language. The tool is a second and significantly more sophisticated version than the original prototype developed during the TANGRAM project. The current version is implemented in C++ and C and has several solvers for transient and steady state analysis of performance and availability metrics.


Markov Chain Silence Period State Transition Matrix Reward Rate Tangible State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jr. A.M. Johnson and M. Malek. Survey of software tools for evaluating reliability, availability and serviceability. ACM Computing Surveys, 20:227–271, 1988.CrossRefGoogle Scholar
  2. 2.
    C. Béounes, M. Aguéra, J. Arlat, S. Bachmann, C. Bourdeau, J.-E. Doucet, K. Kanoun, J.-C. Laprie, S. Metge, J. M. de Souza, D. Powell, and P. Spiesser. SURF-2: A program for dependability evaluation of complex hardware and software systems. In Proceedings of the Twenty-Third International Symposium on Fault-Tolerant Computing, pages 668–673, june 1993.Google Scholar
  3. 3.
    S. Berson, E. de Souza e Silva, and R.R. Muntz. An object oriented methodology for the specification of Markov models. In Numerical Solution of Markov Chains, pages 11–36. Marcel Dekker, Inc., 1991.Google Scholar
  4. 4.
    G.V. Bochmann and J. Vaucher. Adding performance aspects to specification languages. In S. Aggarwal and K. Sabnani, editors, Proceedings of Protocol Specification, Testing and Verification VIII-IFIP, pages 19–31. North-Holland, 1988.Google Scholar
  5. 5.
    J.A. Carrasco and J. Figueras. METFAC: Design and implementation of a software tool for modeling and evaluation of complex fault-tolerant computing systems. In FTCS-16, pages 424–429, 1986.Google Scholar
  6. 6.
    W. Chia-Whei Cheng. The TANGRAM graphical interface facility (TGIF) manual. TGIF WWW at Scholar
  7. 7.
    G. Chiola. A software package for analysis of generalized stochastic Petri net models. In Proceedings of the International Workshop on Timed Petri Net Models, pages 136–143, Torino,Italy, july 1985.Google Scholar
  8. 8.
    G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: stochastic Petri net package. In Proceedings of the Third International Workshop on Petri-nets and Performance Models, pages 142–151, 1989.Google Scholar
  9. 9.
    E. de Souza e Silva and H.R. Gail. Calculating cumulative operational time distributions of repairable computer systems. IEEE Trans. on Computers, C-35(4):322–332, 1986.Google Scholar
  10. 10.
    E. de Souza e Silva and H.R. Gail. An algorithm to calculate transient distributions of cumulative rate and impulse based reward. Technical report, UCLA Technical Report CSD-940021, May 1994.Google Scholar
  11. 11.
    E. de Souza e Silva, H.R. Gail, and R.R. Muntz. Efficient solutions for a class of non-Markovian models. In Computations with Markov Chains, pages 483–506. Kluwer Academic Publishers, 1995.Google Scholar
  12. 12.
    E. de Souza e Silva, H.R. Gail, and R. Vallejos Campos. Calculating transient distributions of cumulative reward. In Proc. Performance '95 and 1995 ACM SIGMETRICS Conf., pages 231–240, 1995.Google Scholar
  13. 13.
    A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Lavenberg, and K.S. Trivedi. The system availability estimator. FTCS-16, pages 84–89, 1986.Google Scholar
  14. 14.
    W.K. Grassmann and D.P. Heyman. Equilibrium distribution of block-structured markov chains with repeating rows. J. App. Prob., 27:557–576, 1990.Google Scholar
  15. 15.
    W.K. Grassmann, M.I. Taksar, and D.P. Heyman. Regenerative analysis and steady state distributions for Markov chains. Operations Research, 33(5):1107-1116, 85.Google Scholar
  16. 16.
    C. Lindemann. DSPNexpress: A software package for the efficient solution of deterministic and stochastic Petri nets. In Proceedings of the Sixth International Conference on Modelling Techniques and Tools for Computer Systems Performance Evaluation, pages 15–29, Edinburgh, Great Britain, 1992.Google Scholar
  17. 17.
    M. A. Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano. Integrating Performance Analysis in the context of LOTOS-Based Design. In Proceedings of the 2nd MASCOTS, Durham, North Carolina, USA, january 1994.Google Scholar
  18. 18.
    P. Mejia Ochoa, E. de Souza e Silva, and Aloysio Pedrosa. Peformance evaluation of distributed systems specified in Estelle (in Portuguese). In 10°-Brazilian Simposium on Computer Networks, 1992.Google Scholar
  19. 19.
    M. Meo, E. de Souza e Silva, and M. Ajmone-Marsan. Efficient solution for a class of Markov chain models of telecommunication systems. In Proc. Performance '96, volume 27&28, pages 603–625, 1996.Google Scholar
  20. 20.
    G. Rubino and B. Sericola. Interval availability distribution computation. In FTCS-23, pages 48–55, 1993.Google Scholar
  21. 21.
    W.H. Sanders, W.D. Obal II, M.A. Qureshi, and F.K. Widjanarko. The UltraSAN modeling environment. Performance Evaluation, October/November 1995.Google Scholar
  22. 22.
    C.M. Sauer, E.A. MacNair, and J.F. Kurose. Queueing network simulations of computer communication. IEEE Journal on Selected Areas in Communications, SAC-2:203–220, 1984.CrossRefGoogle Scholar
  23. 23.
    W.J. Stewart. MARCA Markov chain analyzer, a software package for Markov chains. In Numerical Solution of Markov Chains, pages 37–61. Marcel Dekker, Inc., 1991.Google Scholar
  24. 24.
    W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University Press, 1994.Google Scholar
  25. 25.
    M. Veran and D. Potier. QNAP2: A portable environment for queueing systems modeling. Intl. Conf. Modeling Technique and Tools for Perf. Eval., 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Rosa M. L. R. Carmo
    • 1
  • Luiz R. de Carvalho
    • 1
  • Edmundo de Souza e Silva
    • 1
  • Morganna C. Diniz
    • 1
  • Richard R. R. Muntz
    • 2
  1. 1.Computer Science Department, NCE, Coppe/SistemasFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Computer Science DepartmentUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations