Load balancing: An exercise in constrained convergence

  • Anish Arora
  • Mohamed Gouda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 972)


We consider the problem of load balancing to illustrate the design and analysis of distributed control based on a generalized form of stabilization. We call this form of stabilization constrained convergence. Constrained convergence yields novel, fully distributed, global load balancing programs which are (i) adaptive, (ii) fault-tolerant and, most notably, (iii) the first such programs to exhibit stability while interacting with any possible environment.


distributed control stabilization convergence stability freedom from divergence adaptivity fault-tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Stankovik: Stability and distributed scheduling algorithms. IEEE Transactions on Software Engineering SE-11(1O) (1985) 1141–1152Google Scholar
  2. 2.
    D. L. Eager, E.D. Lazowska, J. Zahorjan: Adaptive load sharing in homogeneous distributed systems. IEEE Transactions on Software Engineering 12(5) (1986) 662–675Google Scholar
  3. 3.
    F. Cristian: Understanding fault-tolerant distributed systems. Communications of the ACM 34(2) (1991) 56–78CrossRefGoogle Scholar
  4. 4.
    E. W. Dijkstra: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11) (1974) 643–644CrossRefGoogle Scholar
  5. 5.
    A. Arora, M. G. Gouda: Load balancing: An exercise in constrained convergence. Paper presented to The Austin Tuesday Afternoon Club (1990)Google Scholar
  6. 6.
    M. G. Gouda, T. Herman: Adaptive programming. IEEE Transactions on Software Engineering 17(9) (1991) 911–921CrossRefGoogle Scholar
  7. 7.
    A. Arora, M. G. Gouda, T. Herman: Composite routing protocols. Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing (1990) 70–78Google Scholar
  8. 8.
    A. Arora: A foundation of fault-tolerant computing. PhD Dissertation, The University of Texas at Austin (1992) Google Scholar
  9. 9.
    A. Arora, M. G. Gouda: Closure and convergence: A foundation of fault-tolerant computing. IEEE Transactions on Software Engineering 19(11) (1993) 1015–1027CrossRefGoogle Scholar
  10. 10.
    A. Arora, M. G. Gouda: Distributed reset. IEEE Transactions on Computers 43(9) (1994) 1026–1038CrossRefGoogle Scholar
  11. 11.
    A. Arora, A. Singhai: Fault-tolerant reconfiguration of trees and rings in networks. Journal of High Integrity Design. to appearGoogle Scholar
  12. 12.
    C.-Y. H. Hsu, J. W.-S. Liu: Dynamic load balancing algorithms in homogeneous distributed systems. Proceedings of 16th International Conference on Distributed Computer Systems (1986) 216–223Google Scholar
  13. 13.
    H. S. Stone: Multiprocessor scheduling with the aid of network flow algorithms. IEEE Transactions on Computers 4(3) (1978) 254–258Google Scholar
  14. 14.
    D. L. Eager, E. D. Lazowska, J. Zahorjan: A comparison of receiver-initiated and sender-initiated dynamic load sharing. Performance Evaluation 6(1) (1986) 53–68CrossRefGoogle Scholar
  15. 15.
    J. A. Stankovik: A perspective on distributed computer systems. IEEE Transactions on Computers 33(12) (1984) 1102–1115Google Scholar
  16. 16.
    N. G. Shivaratri, P. Krueger, M. Singhal: Load distributing for locally distributed systems. IEEE Computer 25(12) (1994) 33–45Google Scholar
  17. 17.
    F. C. H. Lin, R. Keller: The gradient model load balancing method. IEEE Transactions on Software Engineering 13(1) (1987) 32–38Google Scholar
  18. 18.
    M. K. Kam, F. B. Bastani: A self-stabilizing ring protocol for load balancing in distributed real-time process control systems. Technical Report #UH-CS-87-9, Department of Computer Science, University of Houston (1987)Google Scholar
  19. 19.
    I.-L. Yen, F. B. Bastani: Robust coordination in distributed multi-server systems. Proceedings of the IEEE Workshop on Advances in Parallel and Distributed Systems (1994) 133–138Google Scholar
  20. 20.
    E. Cohen: On the convergence span of greedy load balancing. Information Processing Letters (1994).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Anish Arora
    • 1
  • Mohamed Gouda
    • 2
  1. 1.Dept. of Computer & Inf. ScienceThe Ohio State UniversityColumbus
  2. 2.Dept. of Computer SciencesThe University of TexasAustin

Personalised recommendations