Temporal theories of reasoning

  • Joeri Engelfriet
  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 838)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F.A.K. van Benthem, The logic of time: a model-theoretic investigation into the varieties of temporal ontology and temporal discourse, Reidel, Dordrecht, 1983.Google Scholar
  2. 2.
    J.F.A.K. van Benthem, Logic and the flow of information, in: D. Prawitz, B. Skyrms, D. Westerstahl (eds.), Proc. 9th Int. Congress of Logic, Methodology and Philosophy of Science, North Holland, 1991Google Scholar
  3. 3.
    P. Besnard, R.E. Mercer, Non-monotonic logics: a valuations-based approach, In: B. du Boulay, V. Sgurev (eds.), Artificial Intelligence V: Methodology, Systems, Applications, Elsevier Science Publishers, 1992, pp. 77–84Google Scholar
  4. 4.
    H. Bestougeff, G. Ligozat, Logical tools for temporal knowledge representation, Ellis Horwood, 1992Google Scholar
  5. 5.
    S. Blamey, Partial logic, in: D. Gabbay and F. Guenthner (eds.), Handbook of philosophical logic, Vol. III, 1–70, Reidel, Dordrecht, 1986.Google Scholar
  6. 6.
    K.A. Bowen, R. Kowalski, Amalgamating language and meta-language in logic programming. In: K. Clark, S. Tarnlund (eds.), Logic programming. Academic Press, 1982.Google Scholar
  7. 7.
    W.J. Clancey, C. Bock, Representing control knowledge as abstract tasks and metarules, in: Bolc, Coombs (Eds.), Expert system applications, 1988.Google Scholar
  8. 8.
    R. Davis, Metarules: reasoning about control, Artificial Intelligence 15 (1980), pp. 179–222.Google Scholar
  9. 9.
    J. Engelfriet, J. Treur, A temporal model theory for default logic, in: M. Clarke, R. Kruse, S. Moral (eds.), Proc. 2nd European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, ECSQARU '93, Springer Verlag, 1993, pp. 91–96. Extended version: Report IR-334, Vrije Universiteit Amsterdam, Department of Mathematics and Computer Science, 1993, pp. 38Google Scholar
  10. 10.
    J. Engelfriet, J. Treur, Relating linear and branching time temporal models, Report, Free University Amsterdam, Department of Mathematics and Computer Science, 1994Google Scholar
  11. 11.
    J. Engelfriet, J. Treur, Final model semantics for normal default theories, Report, Free University Amsterdam, Department of Mathematics and Computer Science, 1994Google Scholar
  12. 12.
    M. Finger, D.M. Gabbay, Adding a temporal dimension to a logic system, Journal of Logic, Language and Information 1 (1992), pp. 203–233Google Scholar
  13. 13.
    D.M. Gabbay, Intuitionistic basis for non-monotonic logic, In: G. Goos, J. Hartmanis (eds.), 6th Conference on Automated Deduction, Lecture Notes in Computer Science, vol. 138, Springer Verlag, 1982, pp. 260–273Google Scholar
  14. 14.
    E. Giunchiglia, P. Traverso, F. Giunchiglia, Multi-context systems as a specification framework for complex reasoning systems, In: J. Treur, Th. Wetter (eds.), Formal specification of complex reasoning systems, Ellis Horwood, 1993.Google Scholar
  15. 15.
    R. Goldblatt, Logics of time and computation. CSLI Lecture Notes, vol. 7. 1987, Center for the Study of Language and Information.Google Scholar
  16. 16.
    F. van Harmelen, R. Lopez de Mantaras, J. Malec, J. Treur, Comparing formal specification languages for complex reasoning systems. In: J. Treur, Th. Wetter (eds.), Formal specification of complex reasoning systems, Ellis Horwood, 1993, pp. 257–282Google Scholar
  17. 17.
    S. Kripke, Semantical analysis of intuitionistic logic, In: J.N. Crossley, M. Dummett (eds.), Formal systems and recursive function theory, North Holland, 1965, pp. 92–129Google Scholar
  18. 18.
    T. Langholm, Partiality, truth and persistance, CSLI Lecture Notes No. 15, Stanford University, Stanford, 1988.Google Scholar
  19. 19.
    P. Maes, D. Nardi (eds.), Meta-level architectures and reflection, Elsevier Science Publishers, 1988.Google Scholar
  20. 20.
    R. Reiter, A logic for default reasoning, Artificial Intelligence 13, 1980, pp. 81–132Google Scholar
  21. 21.
    E. Sandewall, A functional approach to non-monotonic logics, Computational Intelligence 1 (1985), pp. 80–87Google Scholar
  22. 22.
    Y.H. Tan, J. Treur, A bi-modular approach to nonmonotonic reasoning, In: De Glas, M., Gabbay, D. (eds.), Proc. World Congress on Fundamentals of Artificial Intelligence, WOCFAI-91, 1991, pp. 461–476.Google Scholar
  23. 23.
    Y.H. Tan, J. Treur, Constructive default logic and the control of defeasible reasoning, B. Neumann (ed.), Proc. 10th European Conference on Artificial Intelligence, ECAI-92, Wiley and Sons, 1992, pp. 299–303.Google Scholar
  24. 24.
    E. Thijsse, Partial logic and knowledge representation, Ph.D. Thesis, Tilburg University, 1992Google Scholar
  25. 25.
    J. Treur, Declarative functionality descriptions of interactive reasoning modules, In: H. Boley, M.M. Richter (eds.), Processing Declarative Knowledge, Proc. of the International Workshop PDK-91, Lecture Notes in Artificial Intelligence, vol. 567, Springer Verlag, 1991, pp. 221–236.Google Scholar
  26. 26.
    J. Treur, Temporal semantics of meta-level architectures for dynamic control, Report, Free University Amsterdam, Department of Mathematics and Computer Science, 1994. Shorter version in: Proc. 4th International Workshop on Meta-programming in Logic, META '94, 1994.Google Scholar
  27. 27.
    J. Treur, Th Wetter (eds.), Formal specification of complex reasoning systems, Ellis Horwood, 1993, p. 282Google Scholar
  28. 28.
    R.W. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning, Artificial Intelligence 13 (1980), pp. 133–170.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Joeri Engelfriet
    • 1
  • Jan Treur
    • 1
  1. 1.Department of Mathematics and Computer ScienceFree University AmsterdamHV AmsterdamThe Netherlands

Personalised recommendations