Advertisement

A complete connection calculus with rigid E-unification

  • Uwe Petermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 838)

Abstract

We present an approach to building-in equational reasoning into theorem provers which are based on the connection method. The approach is an instance of total theory reasoning. In order to achieve a completeness result we combine results concerning the simultaneous rigid E-unification problem with our general framework for building-in theories. We pose the problem whether for the construction of a complete goal-oriented prover with equality it is sufficient to be able to solve only a restricted version of the simultaneous rigid E-unification problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Andrews. Theorem Proving via General Matings. J. ACM, 28(2):193–214, 1981.Google Scholar
  2. 2.
    G. Becher and U. Petermann. Rigid E-Unification by Completion and Rigid Paramodulation (Extended version). Technical report, Dec. 1993. Les Cahiers du L.A.I.A.C. University of Caen. 1993.Google Scholar
  3. 3.
    B. Beckert. Ein vervollständigungsbasiertes Verfahren rar Behandlung von Gleichheit im Tableaukalkül mit freien Variablen. Master's thesis, Universität Karlsruhe (TH), 1993.Google Scholar
  4. 4.
    B. Beckert and R. Hähnle. An improved method for adding equality to free variable semantic tableaux. In D. Kapur, editor, Proceedings, 11th International Conference on Automated Deduction (CADE), Saratoga Springs, NY, LNCS 607, pages 507–521. Springer, 1992.Google Scholar
  5. 5.
    W. Bibel. Automated Theorem Proving. Vieweg, 1st edition, 1982.Google Scholar
  6. 6.
    W. Bibel, S. Brüning, U. Egly, and T. Rath. KoMeT. In W. Bibel, editor, DFG-Kolloquium Schwerpunktprogramm “Deduktion”, pages 19–20. TH Darmstadt, 1994.Google Scholar
  7. 7.
    D. Brand. Proving theorems with the modification method. SIAM Journal of Computation, 4:412–430, 1975.Google Scholar
  8. 8.
    J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Theorem Proving with Equational Matings and Rigid E-unification. J. of ACM, 1992.Google Scholar
  9. 9.
    J. Goubault. A Rule-Based Algorithm for Rigid E-Unification. In G. Gottlob, A. Leitsch, and D. Mundici, editors, 3rd Kurt Gödel Colloquium '93, volume 713 of Lecture Notes in Computer Science. Springer-Verlag, 1993.Google Scholar
  10. 10.
    R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performace Theorem Prover. Journal of Automated Reasoning, 8:183–212, 1992.Google Scholar
  11. 11.
    D. Loveland. Automated Theorem Proving — A Logical Basis. North Holland, 1978.Google Scholar
  12. 12.
    D. W. Loveland. Mechanical Theorem Proving by Model Elimination. JACM, 15(2), 1978.Google Scholar
  13. 13.
    M. Moser. Improving transformation systems for general e-unification. In RTA '93: Rewriting Techniques and Applications, number 690 in LNCS, pages 92–105. Springer, 1993.Google Scholar
  14. 14.
    G. Neugebauer and U. Petermann. CaPrl: Integrating theories into the prolog technology theorem prover ProCom. In CADE '94t Workshop on Theory Reasoning, 1994. to appear.Google Scholar
  15. 15.
    G. Neugebauer and T. Schaub. A pool-based connection calculus. Technical Report AIDA-91-02, FG Intellektik, Technische Hochschule Darmstadt, 1991.Google Scholar
  16. 16.
    U. Petermann. Completeness of the pool calculus with an open built in theory. NTZ-Report 24/93, Naturwissenschaftlich-Theoretisches Zentrum der Universität Leipzig, 1993.Google Scholar
  17. 17.
    U. Petermann. Completeness of the pool calculus with an open built in theory. In G. Gottlob, A. Leitsch, and D. Mundici, editors, 3rd Kurt Gödel Colloquium '93, volume 713 of Lecture Notes in Computer Science. Springer-Verlag, 1993.Google Scholar
  18. 18.
    H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University Press, Oxford, 1987.Google Scholar
  19. 19.
    W. Snyder and C. Lynch. Goal directed strategies for paramodulation. In R. Book, editor, Rewriting Techniques and Applications, Lecture Notes in Computer Science No. 488, pages 150–161, Berlin, 1991. Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Uwe Petermann
    • 1
  1. 1.FB IMNHTWK LeipzigLeipzigFRG

Personalised recommendations