Skip to main content

Semiclassical studies of bound states and molecular dynamics

Part of the Lecture Notes in Physics book series (LNP,volume 93)

Abstract

Semiclassical studies on molecular bound states, molecular collisions, and time-dependent dynamical systems are described. Several methods have been evolved for determining the action variables of nonseparable bound state systems, and thereby for calculating their quantum mechanical eigenvalues. Nonresonant and resonant systems are included, and surfaces of section in higher (>2) dimensional as well as in two-dimensional systems are obtained. Further, from the Fourier transform of an autocorrelation function the molecular spectrum can be determined directly from a trajectory. The effect of an oscillating electric field on a molecule is discussed semiclassically with a view to obtaining a relation between the classical mechanical and quantum mechanical treatments.

Keywords

  • Classical Trajectory
  • Classical Motion
  • Molecular Collision
  • Semiclassical Theory
  • Independent Path

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0021751
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-35510-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Marcus, J. Chem. Phys. 59, 5135 (1973) and references cited therein; W. H. Miller, Adv. Chem. Phys. 25, 69 (1974) and references cited therein.

    Google Scholar 

  2. E.g., K. W. Ford and J. A. Wheeler, Ann. Phys. (N.Y.) 7, 259, 287 (1959); R. B. Bernstein, Adv. Chem. Phys. 10, 75 (1966).

    Google Scholar 

  3. A recent review appears in M. S. Child, in Modern Theoretical Chemistry, W. H. Miller, ed. (Plenum, New York, 1977).

    Google Scholar 

  4. A. Einstein, Verh. Deut. Phys. Ges. 19, 82 (1917).

    Google Scholar 

  5. J. B. Keller,Ann. Phys. (N.Y.) 4, 180 (1958).

    Google Scholar 

  6. W. Eastes and R. A. Marcus, J. Chem. Phys. 61, 4301 (1974); cf discussion of semiclassical bound states, R. A. Marcus, Faraday Disc. Chem. Soc. 55, 9 (1973).

    Google Scholar 

  7. D. W. Noid and R. A. Marcus, J. Chem. Phys. 62, 2119 (1975).

    Google Scholar 

  8. I. C. Percival and N. Pomphrey, Mol. Phys., 31, 917 (1976); S. Chapman, B. Garrett, and W. H. Miller, J. Chem. Phys. 64, 502 (1976); K. S. Sorbie and N. C. Handy, Mol. Phys. 32, 1327 (1976); K. S. Sorbie, ibid. 32, 1577 (1976)

    Google Scholar 

  9. N. C. Handy, S. M. Colwell and W. H. Miller, Farada Disc. Chem. Soc. 62, 29 (1977); I. C. Percival, Adv. Chem. Phys. 36, 1 (1977); K. S. Sorbie and N. C. Handy, Mol. Phys. 33, 1319 (1977); S. M. Colwell and N. C. Handy, ibid. 35, 1183 (1978); J. B. Delos and R. T. Swimm, Chem. Phys. Lett. 47, 76 (1977).

    Google Scholar 

  10. D. W. Noid, Ph.D. Thesis, University of Illinois, Urbana (April, 1976).

    Google Scholar 

  11. D. W. Noid and R. A. Marcus, J. Chem. Phys. 67, 559 (1977).

    Google Scholar 

  12. D. W. Noid, M. L. Koszykowski and R. A. Marcus, J. Chem. Phys. (to be submitted).

    Google Scholar 

  13. M. L. Koszykowski, Ph.D. Thesis, University of Illinois, Urbana (April, 1978).

    Google Scholar 

  14. M. L. Koszykowski, D. W. Noid and R. A. Marcus, J. Chem. Phys. (to be submitted).

    Google Scholar 

  15. D. W. Noid, M. L. Koszykowski and R. A. Marcus, J. Chem. Phys. 67, 404 (1977). The ergodic spectrum there is for the case of ωx = ωy.

    Google Scholar 

  16. J. D. McDonald, R. A. Marcus, J. Chem. Phys. 65, 2180 (1976).

    Google Scholar 

  17. D. W. Noid, M. L. Koszykowski, R. A. Marcus and J. D. McDonald, Chem. Phys. Lett. 51, 540 (1977).

    Google Scholar 

  18. J. R. Stine, M. L. Koszykowski, D. W. Noid and R. A. Marcus, J. Chem. Phys. (to be submitted).

    Google Scholar 

  19. A movie of this calculation has been made at Oak Ridge National Laboratory, D. W. Noid, G. S. Sewell and M. L. Koszykowski, J. Chem. Phys. (to be submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Marcus, R.A., Noid, D.W., Koszykowski, M.L. (1979). Semiclassical studies of bound states and molecular dynamics. In: Casati, G., Ford, J. (eds) Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Lecture Notes in Physics, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021751

Download citation

  • DOI: https://doi.org/10.1007/BFb0021751

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09120-2

  • Online ISBN: 978-3-540-35510-6

  • eBook Packages: Springer Book Archive