An extended schema model for scientific data

  • David T. Kao
  • R. Daniel Bergeron
  • Ted M. Sparr
Papers: Data Models
Part of the Lecture Notes in Computer Science book series (LNCS, volume 871)


The absence of a uniform and comprehensive representation for complex scientific data makes the adaptation of database technology to multidisciplinary research projects difficult. In this paper, we clarify the taxonomy of data representations required for scientific database systems. Then, based on our proposed scientific database environment, we present a scientific data abstraction at the conceptual level, a schema model for scientific data. This schema model allows us to store and manipulate scientific data in a uniform way independent of the implementation data model. We believe that more information has to be maintained as metadata for scientific data analysis than in statistical and commercial databases. Clearly, metadata constitutes an important part of our schema model. As part of the schema model, we provide an operational definition for metadata. This definition enables us to focus on the complex relationship between data and metadata.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AVS92]
    DEC AVS: User's Guide for Ultrix Systems, DEC, May 1992.Google Scholar
  2. [Beha90]
    Behari, A., “Flexvis — A Flow-based Visualization System”, Technical Report 90-17, Department of Computer Science, University of New Hampshire, May 1990.Google Scholar
  3. [Berg89]
    Bergeron, R. D., and Grinstein, G. G., “A Reference Model for the Visualization of Multi-dimensional Data”, Proc. Eurographics '89, Hamburg, F. R. G., September 1989, North Holland Publishing Company.Google Scholar
  4. [Cald91]
    Calder, B. H., “An Interactive Scientific Visualization Application Development Environment”, Technical Report 91-09, Department of Computer Science, University of New Hampshire, May 1991.Google Scholar
  5. [Camp92]
    Campbell W. J., et al., “Techniques for Managing Very Large Scientific Databases”, Proc. IEEE Visualization '92, Boston, Massachusetts, October 1992.Google Scholar
  6. [Dint84]
    Dintelman, S. M., “Data Models for Statistical Database Applications”, IEEE Data Engineering, Vol. 7, No. 1, March 1984.Google Scholar
  7. [Elma89]
    Elmasri, R., and Navathe, S. B., Fundamentals of Database Systems, The Benjamin/Cummings Publishing Company, Inc., 1989.Google Scholar
  8. [Fren90]
    French, J. C., Jones, A. K., and Pfaltz, J. L., “A Summary of the NSF Scientific Database Workshop”, Proc. the 5th International Conference on Statistical and Scientific Database Management, Charlotte, North Carolina, April 1990.Google Scholar
  9. [Gelb90]
    Gelberg, L., Kamins, D., Parker, D., and Sacks, J., “Visualization Techniques for Structured and Unstructured Scientific Data”, Proc. ACM SIGGRAPH '90, 1990.Google Scholar
  10. [Gent84]
    Gentle, J. E., and Bell, J., “Special Data Types and Operators for Statistical Data”, IEEE Data Engineering, Vol. 7, No. 1, March 1984.Google Scholar
  11. [Goug88]
    Gough, M., et al., CDF Implementer's Guide, National Space Science Data Center, NASA Goddard Space Flight Center, Greenbelt, Maryland, 1988.Google Scholar
  12. [Habe91]
    Haber, R. B., Lucas, B., and Collins, N., “A Data Model for Scientific Visualization with Provisions for Regular and Irregular Grids”, Proc. IEEE Visualization '91, San Diego, California, October 1991.Google Scholar
  13. [IBM91]
    “Data Explorer: Understanding the Data Model”, preliminary, IBM Yorktown, October 22, 1991.Google Scholar
  14. [IBM92]
    IBM AIX Visualization Data Explorer/6000 User's Guide, IBM, 1992.Google Scholar
  15. [IRIS92]
    IRIS Explorer 2.0, Technical Report, Silicon Graphics, Inc., July 1992.Google Scholar
  16. [Kao92]
    Kao, D. T., Sparr, T. M., and Bergeron, R. D., “Towards a Schema Model for Scientific Data”, Technical Report 92-19, Department of Computer Science, University of New Hampshire, December 1992.Google Scholar
  17. [Kim90]
    Kim, W., Introduction to Object-Oriented Databases, The MIT Press, 1990.Google Scholar
  18. [Kort86]
    Korth, H. F., and Silberschats, A., Database System Concepts, McGraw-Hill Book Company, 1986.Google Scholar
  19. [Luca92]
    Lucas, B., et al., “An Architecture for a Scientific Visualization System”, Proc. IEEE Visualization '92, Boston, Massachusetts, October 1992.Google Scholar
  20. [Lund84]
    Lundy, R. T., “Metadata Management”, IEEE Data Engineering, Vol. 7, No. 1, March 1984.Google Scholar
  21. [Mont94]
    Montage Object-Relational DBMS, Montage Server Product Description, Montage Software, Spring 1994.Google Scholar
  22. [NCS89]
    NCSA DataScope Reference Manual, NCSA (National Center for Supercomputer Applications), University of Illinois, Champaign-Urbana, Illinois, 1989.Google Scholar
  23. [POS92]
    The POSTGRES 4.0 References, EECS Dept., University of California, Berkeley, California, 1992.Google Scholar
  24. [Rew90]
    Rew, R. K., and Davis, G. P., “NetCDF: An Interface for Scientific Data Access”, IEEE Computer Graphics and Applications, 10, n.4, July 1990.Google Scholar
  25. [Rhei92]
    Rhein, J., Kemnitz, et al., The POSTGRES 4.0 User Manual, EECS Dept., University of California, Berkeley, California, 1992.Google Scholar
  26. [Riba92]
    Ribarsky, W., Brown, B., Myerson, T., Feldmann, R., Smith, S., and Treinish, L., “Object-Oriented, Dataflow Visualization Systems — A Paradigm Shift?”, Proc. IEEE Visualization '92, Boston, Massachusetts, October 1992.Google Scholar
  27. [Spar70]
    Sparr, T. M., and Hann Jr., R. W., “A Water Quality Storage and Retrieval System for Regional Application”, Proc. of National Symposium on Data and Instrumentation for Water Quality Management, Madison, Wisconsin, July 1970.Google Scholar
  28. [Spar81]
    Sparr, T. M., “Units and Accuracy in Statistical Databases”, Proc. Workshop on Statistical Database Management, Menlo Park, California, December 1981.Google Scholar
  29. [Spar93]
    Sparr, T. M., Bergeron, R. D., and Meeker, L. D., “A Visualization-Based Model for a Scientific Database System” Focus on Scientific Visualization, Springer-Verlag, 1993.Google Scholar
  30. [Sper91]
    Speray, D., and Kennon, S., “Volume Probes: Interactive Data Exploration on Arbitrary Grids”, Computer Graphics, Vol. 24, No. 5, November 1991.Google Scholar
  31. [Ston86]
    Stonebraker, M. R., and Rowe, L. A., “The Design of POSTGRES”, Proc. 1986 ACM-SIGMOD Conference on Management of Data and International Conference on the Management of Data, June 1986.Google Scholar
  32. [Ston93a]
    Stonebraker, M. R. and Dozier, J., “The Sequoia 2000 Architecture and Implementation Strategy” Sequoia 2000 Technical Report 93/23, University of California, Berkeley, California, 1993.Google Scholar
  33. [Ston93b]
    Stonebraker, M. R., Chen, J., Nathan, N., and Paxson, C., “Tioga: Providing Data Management Support for Scientific Visualization Applications”, Proc. 1993 International Conference on Very Large Databases, Dublin, Ireland, August 1993.Google Scholar
  34. [Trei87]
    Treinish, L., and Gough, M., “A Software Package for the Data-independent Management of Multidimensional Data”, EOS Transactions of the American Geophysical Union, Vol. 68, No. 28, July 1987.Google Scholar
  35. [Tuke77]
    Tukey, J. D., Exploratory Data Analysis, Addison-Wesley Publishing Company, Reading, Massachusetts., 1977.Google Scholar
  36. [Upso89]
    Upson, C., et al., “The Application Visualization System: A Computational Environment for Scientific Visualization”, IEEE Computer Graphics and Applications, Vol. 9, No. 4, July 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • David T. Kao
    • 1
  • R. Daniel Bergeron
    • 1
  • Ted M. Sparr
    • 1
  1. 1.Department of Computer ScienceUniversity of New HampshireNew HampshireUSA

Personalised recommendations