Advertisement

Novel applications for stimulus-sensitive polymer gels in the preparation of functional immobilized biocatalysts

  • Etsuo Kokufuta
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 110)

Abstract

Functional immobilized biocatalysts may be taken to be immobilized biocatalyst systems with some beneficial functional capability other than the usually credited advantages obtained upon the immobilization of enzymes or microorganisms within appropriate polymers. This review aims to examine the preparation of functional immobilized biocatalysts using stimulus-sensitive polymer gels (SSPGs) that undergo continuous or discontinuous volume collapse in response to alterations in external stimuli. The use of SSPGs offers the following functional capabilities in immobilized preparations: (1) the enhancement of immobilized enzyme activity via the cyclic absorption of substrate solutions; (2) the control of immobilized enzyme reactions, especially their initiation and termination, using changes in temperature; and (3) the conversion of the energy of an immobilized enzyme reaction into mechanical work through discontinuous changes in gel volume. It has become apparent that all of these functions demonstrated by the immobilized preparations obtained rely on the characteristics of specially designed SSPGs: a lightly cross-linked copolymer gel consisting of N-isopropylacrylamide and acrylamide, the thermally controlled swelling/deswelling of which absorbs the substrate to facilitate its diffusion through the gel porosity; a thermosensitive gel consisting of poly(vinyl methyl ether) which is capable of dramatically reducing substrate diffusion above the phase transition temperature; and a polyelectrolyte gel which undergoes volume changes enzymatically at a certain temperature. In conclusion, the ideas or concepts reviewed here could play a part in the design and construction of functional immobilized biocatalysts.

Keywords

Immobilize Enzyme Dextran Sulfate Sodium Lower Critical Solution Temperature Immobilize Biocatalyst Immobilize Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AA

acrylic acid

AAm

acrylamide

Con A

concanavalin A

DSS

dextran sulfate sodium

DSS-gel

gel containing Con A/DSS complex

LCST

lower critical solution temperature

MAPTAC

[(methacrylamide)propyl]trimethylammonium chloride

MBA

N,N′-methylenebis(acrylamide)

MP

α-methyl-d-mannopyranoside

MP-gel

gel containing Con A/MP complex

NIPA

N-isopropylacrylamide

ONPG

O-nitrophenyl-β-d-galactopyranoside

PVMA

poly(vinyl methyl ether)

SSPG

stimulus-sensitive polymer gel

Tc

transition temperature

TMED

N,N,N′,N′-tetramethylethylenediamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Stark GR (ed) (1971) Biochemical aspects of reactions on solid supports. Academic, New YorkGoogle Scholar
  2. 2.
    Wingard LB (ed) (1972) Enzyme engineering, vol 1. Wiley (Interscience), New YorkGoogle Scholar
  3. 3.
    Terui G (ed) (1972) Fermentation technology today, Soc Ferment Technol, Jpn, TokyoGoogle Scholar
  4. 4.
    Zaborsky OR (1973) Immobilized enzymes. CRC Press, Cleveland, OhioGoogle Scholar
  5. 5.
    Pey EK, Wingard LB (eds) (1974) Enzyme engineering, vol 2. Plenum, New YorkGoogle Scholar
  6. 6.
    Olson AC, Cooney CL (eds) (1974) Immobilized enzymes in food and microbial processes. Plenum, New YorkGoogle Scholar
  7. 7.
    Salmona M, Saronio C, Garattini S (eds) (1974) Insolubilized enzymes. Raven, New YorkGoogle Scholar
  8. 8.
    Messing RA (ed) (1975) Immobilized Enzymes for Industrial Reactors. Academic, New YorkGoogle Scholar
  9. 9.
    Weetall H, Suzuki S (eds) (1975) Immobilized enzyme technology. Plenum, New YorkGoogle Scholar
  10. 10.
    Weetall HH (ed) (1975) Immobilized enzymes, antigens, antibodies and peptides — preparation and characterization. Dekker, New YorkGoogle Scholar
  11. 11.
    Chang TMS (ed) (1976) Biomedical applications of immobilized enzymes and proteins. Plenum, New YorkGoogle Scholar
  12. 12.
    Mosbach K (ed) (1976) Immobilized enzymes: methods in enzymology, vol 44. Academic, New YorkGoogle Scholar
  13. 13.
    Wingard LB, Katchalski E, Goldstein L (eds) (1976) Immobilized enzyme principles: applied biochemistry and bioengineering, vol 1. Academic, New YorkGoogle Scholar
  14. 14.
    Wingard LB, Katchalski E, Goldstein L (eds) (1979) Enzyme technology: applied biochemistry and bioengineering, vol 2. Academic, New YorkGoogle Scholar
  15. 15.
    Johnson JC (1979) Immobilized enzymes — preparation and engineering. Noyes Data Co., Park Ridge, New JerseyGoogle Scholar
  16. 16.
    Wingard LB, Katchalski E, Goldstein L (eds) (1981) Analytical applications of immobilized enzymes and cells: applied biochemistry and bioengineering, vol 3. Academic, New YorkGoogle Scholar
  17. 17.
    Chibata I, Wingard LB (eds) (1983) Immobilized microbial cells: applied biochemistry and bioengineering, vol 4. Academic, New YorkGoogle Scholar
  18. 18.
    Lashkin AI (ed) (1985) Enzymes and immobilized cells in biotechnology. Benjamin/Cummings, CaliforniaGoogle Scholar
  19. 19.
    Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, New YorkGoogle Scholar
  20. 20.
    Rosevear A, Kennedy JF, Cabral JMS (1987) Immobilized enzymes and cells. Adam HilgerGoogle Scholar
  21. 21.
    Maugh TH (1984) Science 223: 474Google Scholar
  22. 22.
    Kokufuta E (1990) Kobunshi 39: 367 (in Japanese)Google Scholar
  23. 23.
    Kokufuta E (1991) Hyomen 29: 180 (in Japanese)Google Scholar
  24. 24.
    Kokufuta E (1992) Prog Polym Sci 17: 647CrossRefGoogle Scholar
  25. 25.
    Bernfeld P, Wan J (1963) Science 142: 678PubMedGoogle Scholar
  26. 26.
    Kierstan M, Bucke C (1977) Biotechnol Bioeng 19: 387CrossRefPubMedGoogle Scholar
  27. 27.
    Larsson PO, Mosbach K (1979) Biotechnol Lett 1: 501CrossRefGoogle Scholar
  28. 28.
    Ohlson S, Larsson PO, Mosbach K (1979) Eur J Appl Microbiol Biotechnol 7: 103CrossRefGoogle Scholar
  29. 29.
    Brodelius P, Nilsson K (1980) FEBS Lett 122: 312CrossRefGoogle Scholar
  30. 30.
    Nilsson K, Mosbach K (1980) FEBS Lett 118: 145CrossRefPubMedGoogle Scholar
  31. 31.
    Takata I, Tosa T, Chibata I (1975) J Solid-Phase Biochem. 2: 225Google Scholar
  32. 32.
    Lim F, Sun AM (1980) Science 210: 908Google Scholar
  33. 33.
    Veliky IA, Williams RE (1981) Biotechnol Lett 3: 275CrossRefGoogle Scholar
  34. 34.
    Birnbaum S, Pendleton R, Larsson PO, Mosbach K (1981) Biotechnol Lett 3: 393CrossRefGoogle Scholar
  35. 35.
    Tanaka H, Kurosawa H, Kokufuta E, Veliky I (1984) Biotechnol. Bioeng 26: 1393CrossRefGoogle Scholar
  36. 36.
    Kokufuta E, Yukishige M, Nakamura I (1987) J Ferment Technol 65: 659CrossRefGoogle Scholar
  37. 37.
    Kokufuta E, Shimizu N, Tanaka H, Nakamura I (1988) Biotechnol Bioeng 32: 756CrossRefGoogle Scholar
  38. 38.
    Tanaka T (1978) Phys Rev Lett 40: 820CrossRefGoogle Scholar
  39. 39.
    Tanaka T (1981) Sci Amer 244: 124PubMedGoogle Scholar
  40. 40.
    Tanaka T, Fillmore DJ, Sun ST, Nishio I, Swislow G, Shah A (1980) Phys Rev Lett 45: 1639CrossRefGoogle Scholar
  41. 41.
    Ilavsky M, Hrouz J, Ulbrich K (1982) Polym Bull 7, 107Google Scholar
  42. 42.
    Hirokawa Y, Tanaka T (1984) J Chem Phys 81: 6379CrossRefGoogle Scholar
  43. 43.
    Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87: 1392CrossRefGoogle Scholar
  44. 44.
    Katayama S, Hirokawa Y, Tanaka T, Macromolecules 17, 2641 (1984)CrossRefGoogle Scholar
  45. 45.
    Siegel RA, Firestone BA (1990) J. Contr. Release 11: 181CrossRefGoogle Scholar
  46. 46.
    Beltran S, Baker JP, Hooper HH, Blanch HW, Prausnitz JM (1991) Macromolecules 24: 549CrossRefGoogle Scholar
  47. 47.
    Ohmine I, Tanaka T (1982) J Chem Phys 11: 5725CrossRefGoogle Scholar
  48. 48.
    Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Science 218: 467Google Scholar
  49. 49.
    Osada Y (1987) Adv Polym Sci 82: 1Google Scholar
  50. 50.
    Hirose Y (1989) International workshop on polymer gels, Soc Polym Sci, Jpn. p 5Google Scholar
  51. 51.
    Suzuki A, Tanaka T (1990) Nature 346: 345CrossRefGoogle Scholar
  52. 52.
    Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Macromolecules 23: 1517CrossRefGoogle Scholar
  53. 53.
    Hirokawa Y, Tanaka T, Sato E (1985) Macromolecules 12: 2782CrossRefGoogle Scholar
  54. 54.
    Flory PJ (1953) Principles of polymer chemistry. Cornell Univ Press, New YorkGoogle Scholar
  55. 55.
    Otake K, Inomata H, Konno M, Saito S (1989) J Chem Phys 91: 1345CrossRefGoogle Scholar
  56. 56.
    Prange MM, Hooper HH, Prausnitz JM (1981) AIChE J 35: 803CrossRefGoogle Scholar
  57. 57.
    Hooper HH, Baker JP, Blanch HB, Prausnitz JM (1990) Macromolecules 23: 1096CrossRefGoogle Scholar
  58. 58.
    Ilmain F, Tanaka T, Kokufuta E (1991) Nature 349: 400CrossRefGoogle Scholar
  59. 59.
    See, for example: Srere PA, Mattiasson B, Mosbach K (1973) Proc Nat Acad Sci USA, 70: 2534PubMedGoogle Scholar
  60. 60.
    Kokufuta E, Jinbo E (1992) Macromolecules 25: 3549CrossRefGoogle Scholar
  61. 61.
    Kokufuta E, Yamaya Y, Shimada A, Nakamura I (1988) Biotechnol Lett 10: 301CrossRefGoogle Scholar
  62. 62.
    Metzler DE (1977) Biochemistry. Academic Press, New YorkGoogle Scholar
  63. 63.
    Park TG, Hoffman AS (1988) Appl Biochem Biotechnol 19: 1PubMedGoogle Scholar
  64. 64.
    Park TG, Hoffman AS (1990) J Biomed Mater Res 24: 21CrossRefPubMedGoogle Scholar
  65. 65.
    Park TG, Hoffman AS (1990) Biotechnol Bioeng 35: 152CrossRefGoogle Scholar
  66. 66.
    Kokufuta E, Ogane O, Ichijo I, Watanabe S, Hirasa O (1992) J Chem Soc, Chem Commun 416Google Scholar
  67. 67.
    Dong LC, Hoffman AS (1987) In: Russo P (ed) ACS Symp Ser No 350, p 236Google Scholar
  68. 68.
    Dong LC, Hoffman AS (1986) J Contr Release 4: 223CrossRefGoogle Scholar
  69. 69.
    Inomata H, Goto S, Saito S (1990) Macromolecules 23: 4887CrossRefGoogle Scholar
  70. 70.
    Matsuoka H, Suzuki S, Aizawa M, Kimura Y, Ikegami A (1981) J Appl Biochem 3: 437Google Scholar
  71. 71.
    Blok MC, Deenen LLM, Gier J (1976) Biochim Biophys Acta 433: 1PubMedGoogle Scholar
  72. 72.
    Kokufuta E, Tanaka T (1991) Macromolecules 24: 1605CrossRefGoogle Scholar
  73. 73.
    Kokufuta E, Zhang YQ, Ilmain F, Tanaka T (1991) Polym Prepr Jpn 40: 4204Google Scholar
  74. 74.
    Kuhn W, Hargitay B, Katchalsky A, Eisenberg E (1950) Nature 165: 514Google Scholar
  75. 75.
    Steinberg IZ, Oplatka H, Katchalsky A (1966) Nature 210: 568Google Scholar
  76. 76.
    Sussman MV, Katchalsky A (1970) Science 167: 45PubMedGoogle Scholar
  77. 77.
    Kokufuta E, Matsukawa S, Ebihara T, Matsuda K (1993) ACS Porym Prepr 34: 980Google Scholar
  78. 78.
    Kokufuta E, Zhang YQ, Tanaka T (1991) Nature 351: 302CrossRefGoogle Scholar
  79. 79.
    Ishihara K, Kobayashi M, Shinohara I (1983) Makromol Chem Rapid Commun 4: 327CrossRefGoogle Scholar
  80. 80.
    Kost J, Horbett TA, Ratner BD, Singh M (1985) J Biomed Mater Res 19: 1117CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Etsuo Kokufuta
    • 1
  1. 1.Institute of Applied BiochemistryUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations