Modeling hybrid dynamical systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1066)


We present a modeling scheme for multivariate hybrid dynamical systems. From given time series embedded in appropriate state spaces we predict future outputs by making local linear fits in the neighbourhood of the actual state vectors. In particular, the proposed algorithm can be used online. Thus the quality of the forecast is improved by enclosing new measured data.


Hybrid dynamical systems chaotic behavior tiled state spaces local linear fits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Göllü and P. Varaiya, ”Hybrid dynamical systems,” Proc. 28th Conf. Decision Contr., Tampa, FL, pp. 2708–2712, 1989.Google Scholar
  2. 2.
    J. A. Stiver and P. J. Antsaklis, ”A novel discrete event system approach to modeling and analysis of hybrid control systems,” Control Systems Tech. Rep. #71, Dept. of Elect. Eng., Univ. of Notre Dame, IN, 1991.Google Scholar
  3. 3.
    P. Peleties and R. Decarlo, ”A modeling strategy for hybrid systems based on event structures,” preprint: School of Elect. Eng., Purdue Univ., West Lafayette, IN.Google Scholar
  4. 4.
    J. D. Farmer and J. J. Sidorowich, ”Predicting chaotic time series,” Phys. Rev. Lett. 59, 845, 1987.CrossRefPubMedGoogle Scholar
  5. 5.
    J. D. Farmer and J. J. Sidorowich, ”Exploiting chaos to predict the future and reduce noise,” Evolution, Learning and Cognition ed. Lee, Y. C. (World Scientific), 1988.Google Scholar
  6. 6.
    G. Sugihara and R. May, ”Nonlinear forecasting as a way of distinguishing chaos form measurement errors in time series,” Nature 344, 744, 1990.CrossRefGoogle Scholar
  7. 7.
    C. Chase, J. Serrano and P. J. Ramadge, ”Periodicity and Chaos from Switched Flow Systems: Contrasting Examples of Discretely Controlled Continous Systems,” IEEE Trans. Automat. Contr., Vol. 38, No. 1, pp. 70–83, 1993.CrossRefGoogle Scholar
  8. 8.
    T. Schürmann and I. Hoffmann, ”The entropy of “strange” billiards inside n- simplexes,” J. Phys. A 28, pp. 5033–5039, 1995.Google Scholar
  9. 9.
    H. Kantz, T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, L. G. Flepp, J. Simonet, R. Badii and E. Brun, ”Nonlinear noise reduction: a case study on experimental data,” Phys. Rev. E 48, 1529, 1993.CrossRefGoogle Scholar
  10. 10.
    A. Back, J. Guckenheimer and M. Myers, ”A Dynamical Simulation Facility for Hybrid Systems,” Lect. Notes in Comp. Science, Vol. 736, pp. 255–267, 1993.Google Scholar
  11. 11.
    T. Heckenthaler and S. Engell, ”Approximately Time-Optimal Fuzzy Control of a Two-Tank System,” IEEE Control Systems, Vol. 14, No. 3, pp. 24–30, 1994.CrossRefGoogle Scholar
  12. 12.
    P. Grassberger, T. Schreiber and C. Schaffrath, ”Nonlinear Times sequence Analysis,” International Journal of Bifurcation and Chaos, Vol. 1, No. 2, pp. 521–547, 1991.CrossRefGoogle Scholar
  13. 13.
    R. W. Leven, B.-P. Koch and B. Pompe, ”Chaos In Dissipativen Systemen,” Vieweg & Sohn, Braunschweig, 1989.Google Scholar
  14. 14.
    Ya. B. Pesin, ”Characteristic lyapunov exponents and smooth ergodic theory,” Russ. Math. Surveys 32, 55, 1977.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of DortmundGermany

Personalised recommendations