Abstract verification of structured dynamical systems

  • Michel Sintzoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1066)


Dynamical systems combining different kinds of time are analyzed with the help of homomorphisms which allow time abstraction besides the usual state abstraction and which do preserve fundamental temporal properties. Dynamical systems are composed by restriction, union, synchronization, concatenation and iteration. Thanks to abstraction and structure, the qualitative analysis of systems which are hard to understand can be reduced to that of simpler, homomorphic systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ak93.
    Akin, E., The General Topology of Dynamical Systems, American Math. Soc., Providence, 1993.Google Scholar
  2. Al95.
    Alur, R., et al., The algorithmic analysis of hybrid systems, Theor. Computer Sci. 138(1995) 3–34.CrossRefGoogle Scholar
  3. AM95.
    Alfaro, L. de, and Z. Manna, Verification in continuous time by discrete time reasoning, in: V.S. Alagar and M. Nivat (eds.), Algebraic Methodology and Software Technology, LNCS 936, Springer, Berlin, 1995, pp. 292–306.Google Scholar
  4. AP95.
    Asarin, E., O. Maler and A. Pnueli, Reachability analysis of dynamical systems having piecewise-constant derivatives, Theor. Comput. Sci. 138(1995) 35–65.CrossRefGoogle Scholar
  5. AS85.
    Alpern, B., and F.B. Schneider, Defining liveness, Information Proc. Letters 21(1985) 181–186.CrossRefGoogle Scholar
  6. BL93.
    Benveniste, A., M. Le Borgne and P. Le Guernic, Hybrid systems: the Signal approach, in: R.L. Grossman et al. (eds.), Hybrid Systems, LNCS 736, Springer, Berlin, 1992, pp. 230–254.Google Scholar
  7. Co94.
    Collette, P., Design of Compositional Proof Systems — Application to Unity, Ph.D. thesis, U. Louvain, 1994.Google Scholar
  8. Dij76.
    Dijkstra, E.W., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, 1976.Google Scholar
  9. Ge95.
    Geurts, F., Compositional complexity in dynamical systems, RR95-14, Dept Computing Sci. and Eng., U. Louvain. Also in: Proc. 1995 Intl Symp. on Nonlinear Theory and its Applications, IEICE, Tokyo, 1995.Google Scholar
  10. Gi68.
    Ginzburg, A., Algebraic Theory of Automata, Academic Press, New York, 1968.Google Scholar
  11. Gu95.
    Guckenheimer, J., A robust hybrid stabilization strategy for equilibria, IEEE Trans. Automatic Control 40(1995) 321–326.CrossRefGoogle Scholar
  12. He69.
    Hedlung, G.A., Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3(1969) 320–375.CrossRefGoogle Scholar
  13. KG93.
    Kumar, R., V. Garg and S.I. Marcus, Predicates and predicate transformers for supervisory control of discrete event dynamical systems, IEEE Trans. Automatic Control 38(1993) 232–247.CrossRefGoogle Scholar
  14. Kw91.
    Kwiatkowska, M.Z., On topological characterization of behavioural properties, in: G.M. Reed et al. (eds), Topology and Category Theory in Computer Science, Oxford Sci. Publ., 1991, 153–177.Google Scholar
  15. La83.
    Lamport, L., What good is temporal logic?, in: R. Mason (ed.), Information Processing 83, North-Holland, Amsterdam, 1983, pp. 657–668.Google Scholar
  16. Ma95.
    Mazurkiewicz, A., Introduction to trace theory, in: V. Diekert and G. Rozenberg (eds.), The Book of Traces, World Scientific, Singapore, 1995.Google Scholar
  17. MP92.
    Maler, O., Z. Manna and A. Pnueli, From timed to hybrid systems, in: J.W. de Bakker et al. (eds.), Real Time: Theory and Practice, LNCS 600, Springer, Berlin, 1992, pp. 447–484.Google Scholar
  18. MW95.
    Michel, A.N., and K. Wang, Qualitative Theory of Dynamical Systems, Marcel Dekker, New-York, 1995.Google Scholar
  19. NK93.
    Nerode, A., and W. Kohn, Models of hybrid systems: Automata, topologies, controllability, observability, in: R.L. Grossman et al. (eds.), Hybrid Systems, LNCS 736, Springer, Berlin, 1992, pp. 317–356.Google Scholar
  20. RW87.
    Ramadge, P.J., and W.M. Wonham, Modular feedback logic for discrete-event systems, SIAM J. Control and Optimization 25(1987) 1202–1218.CrossRefGoogle Scholar
  21. Si92.
    Sintzoff, M., Invariance and contraction by infinite iterations of relations, in: J.P. Banâtre and D. Le Métayer (eds.), Research Directions in High-Level Parallel Programming Languages, LNCS 574, Springer, Berlin, 1992, pp. 349–373.Google Scholar
  22. Si95.
    Sintzoff, M., Invariance and termination in structured dynamical systems, RR95-13, Dept Computing Sci. and Eng., U. Louvain. Also in: Proc. 1995 Intl Symp. on Nonlinear Theory and its Applications, IEICE, Tokyo, 1995.Google Scholar
  23. SG95.
    Sintzoff, M., and F. Geurts, Analysis of dynamical systems using predicate transformers — Attraction and composition, in: S.I. Andersson (ed.), Analysis of Dynamical and Cognitive Systems, LNCS 888, Springer, Berlin, 1995, pp. 227–260.Google Scholar
  24. Wi90.
    Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, TAM2, Springer, Berlin, 1990.Google Scholar
  25. ZM95.
    Zhang, Y., and A.K. Mackworth, Constraint nets: a semantic model for hybrid dynamic systems, Theor. Computer Sci. 138(1995) 211–239.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Michel Sintzoff
    • 1
  1. 1.Department of Computing Science and EngineeringUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations