Advertisement

Dependence of viscosity on the composition of concentrated dispersions and the free volume concept of disperse systems

  • L. B. Kandyrin
  • V. N. Kuleznev
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 103)

Abstract

By comparing numerous rheological and theoretical equations describing the dependence of the viscosity of dispersions on the concentration with the dependence of the viscosity of liquids on their free volume, the authors concluded that the dependence of viscosity on the concentration can be described in terms of the so-called “free volume of disperse systems”, i.e. the difference between the maximum possible content of particles in the system ϕmax and the actual concentration ϕ: (ϕfmax−ϕ). This comparison is based on the uniformity of models based on theoretical descriptions of the flow of concentrated dispersions and liquids at molecular level, including the transition region to dispersions losing their fluidity at ϕ → ϕmax on the one hand, and the glass transition region of liquids, on the other hand. The behaviour of both types of systems in the region close to the limiting region is described by the cluster theories and the percolation theory. Experimental data on the concentration dependence of the viscosity of dispersions are given and it is shown that within a certain concentration range they can be described by equations containing parameter ϕf which are similar to Batschinski's or Doolittle's equations. The approach developed by us has been extended to describe other mechanical properties of highly-concentrated dispersions. Further analogy is drawn between the mobility of particles in concentrated dispersions and the glass transition region. Experimental comparison of the data on the compaction rate of highly-concentrated composites under vibration with the free volume of these composites suggested that transition from the high mobility of particles to the “frozen” state occurs at a constant free volume value of dispersions, 15–17 vol.%. We discuss the advantages of the analog method used for systems similar in structure (or in the method of describing structural changes) in spite of considerable differences in the scale of the phenomena being described.

Keywords

Free Volume Chem Phys Disperse System Relative Viscosity Glass Transition Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein A (1905) Ann Phys 17: 549; (1906) Ann Phys 19: 289; (1911) Ann Phys 34: 591; (1920) Kolloid-Z 27: 137Google Scholar
  2. 2.
    Hatschek E (1913) Trans Faraday Soc 9: 80CrossRefGoogle Scholar
  3. 3.
    Baker F (1913) J Chem Soc 103: 1653Google Scholar
  4. 4.
    Hess WR (1920) Kolloid-Z 27: 1CrossRefGoogle Scholar
  5. 5.
    Orr C, Blocker HG (1955) J Colloid Sci 10: 24CrossRefGoogle Scholar
  6. 6.
    Arrhenius S (1887) J Phys Chem 1: 285Google Scholar
  7. 7.
    Weltmann RN, Green H (1943) J Appl Phys 14: 569CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Nicodemo L, Nicolais L (1974) Polymer 15: 589; (1974) also J Appl Polym Sci 18: 2809CrossRefGoogle Scholar
  10. 10.
    Tangsathitkulachai S, Austin LG (1988) Powder Technology 56: 293CrossRefGoogle Scholar
  11. 11.
    Ting AP, Luebbers RH (1957) AlChE Journal 3: 111Google Scholar
  12. 12.
    Robinson JV (1949) J Phys & Coll Chem 53: 1042; (1951) J Phys & Coll Chem 55: 455; (1951) also Trans Soc Rheol 1: 15Google Scholar
  13. 13.
    Mori Y, Ototake N (1956) Kagaku Kogaku — Chem Eng (Japan) 20: 488Google Scholar
  14. 14.
    Trawinski H (1953) Chem Ing Tech 25: 229CrossRefGoogle Scholar
  15. 15.
    Leva M (1959) Fluidization, New YorkGoogle Scholar
  16. 16.
    Rutgers R Jr (1962) Rheol Acta 2: 305CrossRefGoogle Scholar
  17. 17.
    Dalla Valle J, Orr C (1954) Chem Eng Progr Symp 50: 29; also Zenz FA, Othmer DF (1961) Fluidisation and fluid particles systems, NY p 451Google Scholar
  18. 18.
    Hawksley PGW (1951) Some aspects of fluid flow, ch 7, Inst Phys Arnold, LondonGoogle Scholar
  19. 19.
    Kynch GJ (1959) Nature 184: 1311Google Scholar
  20. 20.
    Landell RF, Moser BG, Bauman A (1965) Proc 4th Internat Congr Rheol Part 2, Lee EH (ed) Intersci NY, p 663Google Scholar
  21. 21.
    Pliskin I, Tokita N (1972) J Appl Polym Sci 16: 473CrossRefGoogle Scholar
  22. 22.
    Eilers H (1941) Kolloid-Z, Z-Polym 97: 313; (1943) Kolloid-Z, Z-Polym 102: 154Google Scholar
  23. 23.
    Fedors RF (1975) Polymer 16: 305; (1974) also J Colloid & Interface Sci 46: 545CrossRefGoogle Scholar
  24. 24.
    Chong JS, Cristiansen EB, Baer AD (1971) J Appl Polym Sci 15: 2007CrossRefGoogle Scholar
  25. 25.
    Pal R, Rhodes E (1989) J Rheol 33: 1021CrossRefGoogle Scholar
  26. 26.
    Johnston CW, Brower CH (1970) SPE Journal 26: 31. Cit by [27]Google Scholar
  27. 27.
    Williams, GE, Bergen JT, Poechlin GW (1979) J Rheol 23: 591CrossRefGoogle Scholar
  28. 28.
    Eirich FR (ed) (1956) Rheology. Theory and applications. Acad Press Intersci Publishers. NY, vol 1, ch 14Google Scholar
  29. 29.
    Happel J, Brenner H (1965) Low Reynolds number hydrodynamics with special application to particulate media, Prentice-Hall, Englewood Cliffs NJGoogle Scholar
  30. 30.
    Kunitz M (1926) J Gener Physiol 9: 715CrossRefGoogle Scholar
  31. 31.
    Brinkman HC (1947) Appl Sci Res A1: 27; (1947) Appl Sci Res A2: 81; (1947) Appl Sci Res A3: 333; (1952) also J Chem Phys 20: 571Google Scholar
  32. 32.
    Heller W (1954) J Colloid Sci 2: 547CrossRefGoogle Scholar
  33. 33.
    Guth E, Simha R (1936) Kolloid-Z 74: 266CrossRefGoogle Scholar
  34. 34.
    Vand V (1948) J Phys & Colloid Chem 52: 277; (1948) J Phys & Colloid Chem 52: 299Google Scholar
  35. 35.
    Kynch G (1954) J Appl Phys 3: 55; (1956) also Proc Roy Soc London A237: 90Google Scholar
  36. 36.
    Lewis TB, Nielsen LE (1968) Trans Soc Rheol 12: 421CrossRefGoogle Scholar
  37. 37.
    Petersen JM, Fixman M (1963) J Chem Phys 39: 2516CrossRefGoogle Scholar
  38. 38.
    Bedeaux D, Kapral R, Mazur P (1977) Physica 88A: 88Google Scholar
  39. 39.
    Batchelor, GK, Green JT (1972) J Fluid Mech 56: 401; (1974) also Ann Rev Fluid Mech 6: 227Google Scholar
  40. 40.
    Mooney M (1951) J Colloid Sci 6: 162CrossRefGoogle Scholar
  41. 41.
    Brodnyan JG (1959) Trans Soc Rheol 3: 61CrossRefGoogle Scholar
  42. 42.
    Simha R (1940) J Phys Chem 44: 25; (1945) also J Chem Phys 13: 188CrossRefGoogle Scholar
  43. 43.
    Kuhn W, Kuhn H (1945) Helv Chim Acta 28: 97; also Kuhn W, Kuhn H, Buchner P (1951) Ergeb exact Naturw 25: 1CrossRefGoogle Scholar
  44. 44.
    Kunnen J (1984) Rheol Acta 23: 424CrossRefGoogle Scholar
  45. 45.
    Thomas DG (1965) J Colloid Sci 20: 267CrossRefGoogle Scholar
  46. 46.
    Roscoe R (1949) J Phys Chem 53: 1042; (1952) also Brit J Appl Phys 3: 267CrossRefGoogle Scholar
  47. 47.
    Gillespie T (1960) J Colloid Sci 15: 219; (1963) J Colloid Sci 18: 32; (1960) also J Polym Sci 46: 383; Gillespie T (1963) Emulsion Rheology; Sherman PA (ed) (1963) Pergamon Press, NY p 115CrossRefGoogle Scholar
  48. 48.
    de Bruijn H (1951) Disc Faraday Soc 11: 86Google Scholar
  49. 49.
    Bedeaux D (1983) Physica 121A: 345Google Scholar
  50. 50.
    Budianski B (1965) J Mech & Phys Solids 13: 223. Cit by [52]Google Scholar
  51. 51.
    Hill R (1965) J Mech & Phys Solids 13: 213. Cit by [52]Google Scholar
  52. 52.
    Christensen, RM (1979) Mechanics of composite materials. Wiley Intersci NY ch 2Google Scholar
  53. 53.
    Lee DI (1969) Trans Soc Rheol 13: 273; (1970) also J Paint Technol 42: 550CrossRefGoogle Scholar
  54. 54.
    Ishai O, Cohen LJ (1967) Int J Mech Sci 9: 539; (1967) Int J Mech Sci 9: 605.CrossRefGoogle Scholar
  55. 55.
    Narkis M, Nicolais L, Joseph E (1978) J Appl Polym Sci 22: 2391CrossRefGoogle Scholar
  56. 56.
    Saito N (1950) J Phys Soc Japan 5: 4; (1950) J Phys Soc Japan 6: 162; (1952) J Phys Soc Japan 7: 447CrossRefGoogle Scholar
  57. 57.
    Nagatani T (1979) J Phys Soc Japan 47: 320CrossRefGoogle Scholar
  58. 58.
    Wagner AJ, Russel WB (1989) Physica 155A: 475; also de Kruiff CG, van Iersel EMF, Vzij A, Russel WB (1985) J Chem Phys 83: 4717; Russel WB, Gast AP (1986) J Chem Phys 84: 1815Google Scholar
  59. 59.
    Taylor GI (1932) Proc Roy Soc London A138: 41; (1934) Proc Roy Soc London A146: 501Google Scholar
  60. 60.
    Mellema J, Willemse MWM (1983) Physica 122A: 286Google Scholar
  61. 61.
    Felderhof BU (1976) Physica 82A: 596; (1976) Physica 82A: 611Google Scholar
  62. 62.
    Bedeaux D (1987) J Colloid & Interface Sci 118: 80Google Scholar
  63. 63.
    Cichocki B, Felderhof BU, Schmitz R (1989) Physica 154A: 233Google Scholar
  64. 64.
    Lundgren TS (1972) J Fluid Mech 51: 273Google Scholar
  65. 65.
    Beenakker CJW (1984) Physica 128A: 48Google Scholar
  66. 66.
    Ladd AJC (1988) J Chem Phys 88: 5051; (1989) J Chem Phys 90: 1149CrossRefGoogle Scholar
  67. 67.
    Simha R (1952) J Appl Phys 23: 1020CrossRefGoogle Scholar
  68. 68.
    Krieger IM, Dougherty, TJ (1959) Trans Soc Rheol 3: 137; also Krieger IM (1972) Adv Colloid & Interface Sci 3: 111; also Krieger IM, Maron SH (1960) Reology. Theory and application. Ed by Eirich FR vol 3 Acad Press NYCrossRefGoogle Scholar
  69. 69.
    Frankel NA, Acrivos A (1967) Chem Eng Sci 22: 847CrossRefGoogle Scholar
  70. 70.
    Sengun MZ, Probstein RE (1989) PCH (Phys-Chem Hydrodynamics) 11: 229Google Scholar
  71. 71.
    Quemada D (1977) Rheol Acta 16: 82CrossRefGoogle Scholar
  72. 72.
    Happel J (1957) J Appl Phys 28: 1288CrossRefGoogle Scholar
  73. 73.
    Shishkin VA (1980) Proc 2nd Symp. Theory and mech process of polym mater perm p 6 (in russian); Shishkin VA (1984) The structure-mechanical study of the composite materials and constructions. USSR Acad Ural Sci Center Perm p 109 (in Russian)Google Scholar
  74. 74.
    Oda M (1977) Solids foundation 17: 29Google Scholar
  75. 75.
    Bernal ID, Mason I (1960) Nature 188: 910Google Scholar
  76. 76.
    Scott D (1962) Nature 194: 956Google Scholar
  77. 77.
    de Gennes PG (1979) J Physique 40: 783Google Scholar
  78. 78.
    Broadbent SR, Hammersley, JM (1957) Proc Camb Phylos Soc (Math & Phys Sci) 53: 629; (1957) Proc Camb Phylos Soc (Math & Phys Sci) 53: 642Google Scholar
  79. 79.
    Shante VKS, Kirkpatrick S (1971) Adv in Phys 20: 325; also Kirkpatrick S (1973) Rev Mod Phys 45: 574CrossRefGoogle Scholar
  80. 80.
    Fitzpatrick JP, Malt RB, Spaepen F (1974) Phys Lett 47A: 207Google Scholar
  81. 81.
    Clerc J, Girand G, Roussenq J (1975) CR Acad Sci Paris 281B: 227Google Scholar
  82. 82.
    Batschinski A (1913) Z für Phys Chem 84: 643Google Scholar
  83. 83.
    Macleod DB (1923) Trans Faraday Soc 19: 6; (1923) Trans Faraday Soc 19: 17CrossRefGoogle Scholar
  84. 84.
    Doolittle AK (1951) J Appl Phys 22: 1471CrossRefGoogle Scholar
  85. 85.
    Eyring H (1936) J Chem Phys 4: 283; also Hirschfelder J, Stevenson D, Eyring H (1937) J Chem Phys 5: 896; (1937) also J Phys Chem 41: 249CrossRefGoogle Scholar
  86. 86.
    Frenkel YaI (1959) Kinetic theory of liquids. USSR Moscow — Leningrad USSR Acad SciGoogle Scholar
  87. 87.
    Cohen MH, Turnbull D (1959) J Chem Phys 31: 1164CrossRefGoogle Scholar
  88. 88.
    Fox TG, Flory PJ (1950) J Appl Phys 21: 581; (1951) also J Phys Chem 55: 221; (1954) also J Polym Sci 14: 315CrossRefGoogle Scholar
  89. 89.
    Williams MF, Landell RF, Ferry JD (1955) J Amer Chem Soc 77: 3701CrossRefGoogle Scholar
  90. 90.
    Turnbull D, Cohen MH (1961) J Chem Phys 34: 120CrossRefGoogle Scholar
  91. 91.
    Macedo PB, Litovitz TA (1965) J Chem Phys 42: 245CrossRefGoogle Scholar
  92. 92.
    Fulcher GS (1925) J Amer Ceram Soc 8: 339Google Scholar
  93. 93.
    Tamman G, Hesse W (1926) Z Anorg Allgem Chem 156: 245CrossRefGoogle Scholar
  94. 94.
    Nemilov SV (1976) Fizika i khimiya stekla USSR (Phys & Chem of Glass) 2: 97; (1976) Fizika i khimiya stekla USSR (Phys & Chem of Glass) 2: 192; (1977) Fizika i khimiya stekla USSR (Phys & Chem of Glass) 3: 423; (1978) Fizika i khimiya stekla USSR (Phys & Chem of Glass) 4: 129 (in Russian)Google Scholar
  95. 95.
    Rostiashvili VG, Irzhak VI, Rosenberg BA (1987) Glass-transition of polymers. USSR Leningrad. Ed Khimiya (in Russian)Google Scholar
  96. 96.
    Cohen MH, Grest S (1979) Phys Rev B20: 1077; Grest S, Cohen MH (1980) Phys Rev B21: 4113Google Scholar
  97. 97.
    Hiwatary Y (1982) J Chem Phys 76: 5502CrossRefGoogle Scholar
  98. 98.
    Kandyrin LB, Kuleznev VN, Shcheulova LK (1983) Kolloidnyi zhurnal (USSR) 45: 657Google Scholar
  99. 99.
    Volarovich MP (1944) The low-temperature viscosity of lubricant oils. Moscow Ed USSR Acad Sci (in Russian)Google Scholar
  100. 100.
    Middleman S (1968) The flow of high polymers. Continuum and molecular rheology. Intersci Publ Wiley NY-London-Sydney-TorontoGoogle Scholar
  101. 101.
    Karnis A, Goldsmith HL, Mason SG (1966) Canad Chem Eng 44: 181; also Shizgal B, Goldsmith HL, Mason SG (1965) Canad Chem Eng 43: 97Google Scholar
  102. 102.
    Kandyrin LB, Kuleznev VN, Vorobyev LR, Belnik PR (1987) Mekhanika kompozitnykh materialov LatSSR (Mech of Compos Mater) No 4: 719 (in Russian)Google Scholar
  103. 103.
    Uryev NB (1980) High-concentrated disperse systems. USSR Moscow. Ed Khimiya (in Russian)Google Scholar
  104. 104.
    Wieckowski A, Strek F (1966) Chemia stosowana (Poland) 1B: 95; (1966) Chemia stosowana (Poland) 3B: 431Google Scholar
  105. 105.
    Kuleznev VN, Markhasin IL, Kondrashov OF, Chernin YeI, Kandyrin LB, Fuchs GI, Grinberg SM (1980) Kolloidnyi zhurnal (USSR) 42: 49Google Scholar
  106. 106.
    Kuleznev VN, Kandyrin LB (1989) Makromol Chem Macromol Symp 28: 267Google Scholar
  107. 107.
    Evans KE, Gibson AG (1986) Compos Sci & Technol 25: 149Google Scholar
  108. 108.
    Susteric Z (1989) Makromol Chem Macromol Symp 23: 329Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • L. B. Kandyrin
    • 1
  • V. N. Kuleznev
    • 1
  1. 1.M. V. Lomonossov Institute of Fine Chemical TechnologyMoscowUSSR

Personalised recommendations