Advertisement

An observational subset of first-order logic cannot specify the behaviour of a counter (extended abstract)

  • Oliver Schoett
Semantics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 480)

Abstract

An “observational” specification language for abstract data types is one that allows only observable aspects of a type to be specified. An observational sublanguage of first-order logic must not contain equations between values of hidden sorts. It is shown that in such a sublanguage the behaviour of a simple counter data type cannot be finitely specified. This implies that more than first-order logic is needed for a useful observational specification language, and that more than first-order logic or a stronger proof rule than previously proposed is needed to work with nonstandard “behavioural” semantics of specifications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bar77]
    Jon Barwise, editor. Handbook of Mathematical Logic. Number 90 in Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam et al., 1977.Google Scholar
  2. [Bot81]
    Klaus Bothe. A comparative study of abstract data type concepts. Elektronische Informationsverarbeitung und Kybernetik, 17:237–257, 1981.Google Scholar
  3. [GGM76]
    V. Giarratana, F. Gimona, and U. Montanari. Observability concepts in abstract data type specification. In A. Mazurkiewicz, editor, Mathematical Foundations of Computer Science 1976, number 45 in LNCS, pages 576–587, Gdańsk, Poland, 1976. Springer.Google Scholar
  4. [HU79]
    John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Mass. et al., 1979.Google Scholar
  5. [Kar83]
    Marek Karpinski, editor. Foundations of Computation Theory, number 158 in LNCS, Borgholm, Sweden, 1983. Springer.Google Scholar
  6. [LZ75]
    Barbara H. Liskov and Stephen N. Zilles. Specification techniques for data abstractions. IEEE Transactions on Software Engineering, SE-1:7–19, 1975.Google Scholar
  7. [MS87]
    G. Mirkowska and A. Salwicki. Algorithmic Logic. D. Reidel, Dordrecht et al., 1987. Also published by PWN—Polish Scientific Publishers, Warsaw.Google Scholar
  8. [Par72]
    D. L. Parnas. A technique for software module specification with examples. Communications of the ACM, 15:330–336, 1972.CrossRefGoogle Scholar
  9. [Rei85]
    Horst Reichel. Behavioural validity of conditional equations in abstract data types. In Contributions to General Algebra 3. Proceedings ... 1984, pages 301–324. Hölder-Pichler-Tempsky, Vienna, 1985. Also published by B. G. Teubner, Stuttgart.Google Scholar
  10. [Sch81]
    Oliver Schoett. Ein Modulkonzept in der Theorie Abstrakter Datentypen. Bericht 81, Fachbereich Informatik, Universität Hamburg, August 1981.Google Scholar
  11. [Sch90]
    Oliver Schoett. Behavioural correctness of data representations. Science of Computer Programming, 14:43–57, 1990.CrossRefGoogle Scholar
  12. [ST87]
    Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic specification. Journal of Computer and System Sciences, 34:150–178, 1987.CrossRefGoogle Scholar
  13. [ST88]
    Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from algebraic specifications: Implementations revisited. Acta Informatica, 25:233–281, 1988.CrossRefGoogle Scholar
  14. [SW83]
    Donald Sannella and Martin Wirsing. A kernel language for algebraic specification and implementation. Internal Report CSR-131-83, Department of Computer Science, University of Edinburgh, September 1983. Extended Abstract in [Kar83], p. 413–427.Google Scholar
  15. [TWW82]
    J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type specification: Parameterization and the power of specification techniques. ACM Transactions on Programming Languages and Systems, 4:711–732, 1982.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Oliver Schoett
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2Germany

Personalised recommendations