Advertisement

Detection of deadlocks in an infinite family of nets

  • J. Beauquier
  • A. Choquet
  • A. Petit
  • G. Vidal-Naquet
Concurrency I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 480)

Abstract

In this paper, we introduce a particular model of massively parallel net, made of the connexions of identical patterns. As a matter of fact, one can construct in a modular way an infinite family of nets from a given pattern. In this framework, we raise an entirely original class of problems : prove that, for any such net, whatever the execution is, some properties are verified and some other are not. The originality (and the difficulty) comes from the fact that the family of nets is infinite. We give a method for validating a pattern with respect to the deadlock problem. If a pattern is valid, then any net, constructed by connecting an arbitrary number of patterns in an arbitrary way, is deadlock-free.

Key words

massive parallelism deadlock detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Beauquier J, Choquet A., Petit A., Vidal-Naquet G.,Syntactic properties of unbounded nets of processors, CAAP 1989, Lecture Notes in Computer Science 351, Barcelone, 1989.Google Scholar
  2. Beauquier J, Choquet A., Petit A., Vidal-Naquet G.,Detection of deadlocks in an infinite family of nets, Technical report no 594, Université Paris-Sud, France, 1990.Google Scholar
  3. Berstel J.,Transductions and context-free languages, Teubner, Stuttgart, 1979.Google Scholar
  4. Borkar S., Cohn R., Cox G., Gross T., Kung H. T., Lam M., Levine M., Moore B., Moore W., Peterson C., Susman J., Sutton J., Urbanski J., Webb J.,Supporting Systolic and Memory Communication in iWarp, Proceedings of the 17th Inter. Symp. on Computer Architecture, pp 70–81, 1990.Google Scholar
  5. Brookes, Roscoe,Deadlock analysis in networks of communicating process, Logic and Models of Concurrent Systems (K.R. Apt ed.), NATO ASI series F, Vol 13, Springer, 1985.Google Scholar
  6. Ginsburg S.,The Mathematical Theory of Context-Free Languages, McGraw-Hill, New-York, 1966.Google Scholar
  7. Hillis W.D.,The Connection Machine, MIT Press, 1985.Google Scholar
  8. Kohonen T.,An introduction to neural computing, Neural Networks, vol 1, pp 3–16, 1988.CrossRefGoogle Scholar
  9. Lambert J.-L.,Le problème de l'accessibilité dans les réseaux de Petri, Thèse, Université de Paris-Sud, 1987.Google Scholar
  10. Parikh R.J., On context free languages, Journal Assoc. Comp. Mach. 13, pp 570–581, 1966.Google Scholar
  11. Quinton P., An introduction to systolic architectures, Future Parallel Computer, LNCS 272, pp387–400, 1986.Google Scholar
  12. Romeuf J.-F.,A polynomial algorithm for solving systems of two linear diophantine equations, Theoretical Computer Science 74, pp 329–340, 1990.CrossRefGoogle Scholar
  13. van Tillborg A.M.,Panel on Future Directions in Parallel Computer Architecture, Computer Architecture News, pp 3–53, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. Beauquier
    • 1
  • A. Choquet
    • 1
  • A. Petit
    • 1
  • G. Vidal-Naquet
    • 1
    • 2
  1. 1.L.R.I. URA 410 CNRS Bât. 490Université Paris-SudOrsayFrance
  2. 2.Ecole Supérieure d'ElectricitéGif Sur YvetteFrance

Personalised recommendations