Decidable sentences for context-free groups

  • K. Madlener
  • F. Otto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 480)


The linear sentences of Book [1983] are a class of logical formulae particularly well-suited for describing certain properties of Thue congruences. Here we show that the decidability of the set of valid linear sentences is an invariant property of finitely generated monoids. Further, we prove that for each finite monadic string-rewriting system R such that R presents a group, and R is confluent on


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    J.M. Autebert, L. Boasson, G. Senizergues [1987]; Groups and NTS languages; J. Comput. System Sci. 35, 243–267.CrossRefGoogle Scholar
  2. 2.
    R.V. Book [1983]; Decidable sentences of Church-Rosser congruences; Theoretical Computer Science 24, 301–312.CrossRefGoogle Scholar
  3. 3.
    R.V. Book [1987]; Thue systems as rewriting systems; J. Symbolic Computation 3, 39–68.Google Scholar
  4. 4.
    R.H. Gilman [1979]; Presentations of groups and monoids; J. of Algebra 57, 544–554.CrossRefGoogle Scholar
  5. 5.
    J.E. Hopcroft, J.D. Ullman [1979]; Introduction to automata theory, languages, and computation [Addison-Wesley, Reading, MA].Google Scholar
  6. 6.
    K. Madlener, F. Otto [1988]; Communtativity in groups presented by finite Church-Rosser Thue systems; RAIRO Inf. Théorique et Appl. 22, 93–111.Google Scholar
  7. 7.
    K. Madlener, F. Otto [1989]; About the descriptive power of certain classes of finite string-rewriting systems; Theoretical Computer Science 67, 143–172.CrossRefGoogle Scholar
  8. 8.
    D.E. Muller, P.E. Schupp [1983]; Groups, the theory of ends, and context-free languages; J. Comput. System Sci. 26, 295–310.CrossRefGoogle Scholar
  9. 9.
    F. Otto [1984]; Some undecidability results for non-monadic Church-Rosser Thue systems; Theoretical Computer Science 33, 261–278.CrossRefGoogle Scholar
  10. 10.
    F. Otto, L. Zhang [1990]; Decision problems for finite special-string-rewriting systems that are confluent on some congruence class; Acta Informatica, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • K. Madlener
    • 1
  • F. Otto
    • 2
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaiserslautern
  2. 2.Fachbereich MathematikFG Informatik, Gesamthochschule KasselKassel

Personalised recommendations