Rational relations with bounded delay

  • Christiane Frougny
  • Jacques Sakarovitch
Automata And Formal Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 480)


This paper presents a generalization of Eilenberg and Schützenberger's Theorem on length-preserving relations to rational relations with the property that the difference of lengths of two related words is bounded, and to rational relations of infinite words that are realized by 2-tape automata such that the distance between the two heads during any computation keeps bounded.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Berstel, Transductions and context-free languages. Teubner, 1979.Google Scholar
  2. [2]
    L. Boasson, Cônes rationnels et familles agréables de langages — Application au langage à compteur. Thèse de 3e cycle, Université Paris 7, 1971.Google Scholar
  3. [3]
    J. Cannon, D. Epstein, D. Holt, M. Paterson and W. Thurston, Word processing and group theory, Preprint.Google Scholar
  4. [4]
    M. Dauchet and S. Tison, The theory of ground rewrite systems is decidable. 5th IEEE Symposium LICS, 242–248, 1990.Google Scholar
  5. [5]
    S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.Google Scholar
  6. [6]
    Ch. Frougny, Systèmes de numération linéaires et automates finis. Thèse d'Etat, Université Paris 7, Technical Report LITP 89-69, 1989.Google Scholar
  7. [7]
    Ch. Frougny, Representations of numbers and finite automata. Technical report LITP 90-47, to appear.Google Scholar
  8. [8]
    M. Latteux and E. Timmerman, Rational ω-transductions. Proceedings of MFCS, L.N.C.S. 452, 263–277, 1990.Google Scholar
  9. [9]
    J. Leguy, Transductions rationnelles décroissantes. R.A.I.R.O. Informatique Théorique 15, 141–148, 1981.Google Scholar
  10. [10]
    J. Sakarovitch, Deux remarques sur un théorème de S. Eilenberg. R.A.I.R.O Informatique Théorique 17, 23–48, 1983.Google Scholar
  11. [11]
    W. Thomas, Automata and quantifier hierarchies. In “Formal properties of finite automata and applications”, L.N.C.S. 386, 104–119, 1988.Google Scholar
  12. [12]
    W. Thomas, Infinite trees and automata definable relations over ω-words. Proceedings of STACS, L.N.C.S. 452, 407–415, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Christiane Frougny
    • 1
  • Jacques Sakarovitch
    • 2
  1. 1.Litp and Université Paris VIIIFrance
  2. 2.Litp, Institut Blaise PascalParis Cedex 05France

Personalised recommendations