Advertisement

Rational relations with bounded delay

  • Christiane Frougny
  • Jacques Sakarovitch
Automata And Formal Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 480)

Abstract

This paper presents a generalization of Eilenberg and Schützenberger's Theorem on length-preserving relations to rational relations with the property that the difference of lengths of two related words is bounded, and to rational relations of infinite words that are realized by 2-tape automata such that the distance between the two heads during any computation keeps bounded.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Berstel, Transductions and context-free languages. Teubner, 1979.Google Scholar
  2. [2]
    L. Boasson, Cônes rationnels et familles agréables de langages — Application au langage à compteur. Thèse de 3e cycle, Université Paris 7, 1971.Google Scholar
  3. [3]
    J. Cannon, D. Epstein, D. Holt, M. Paterson and W. Thurston, Word processing and group theory, Preprint.Google Scholar
  4. [4]
    M. Dauchet and S. Tison, The theory of ground rewrite systems is decidable. 5th IEEE Symposium LICS, 242–248, 1990.Google Scholar
  5. [5]
    S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.Google Scholar
  6. [6]
    Ch. Frougny, Systèmes de numération linéaires et automates finis. Thèse d'Etat, Université Paris 7, Technical Report LITP 89-69, 1989.Google Scholar
  7. [7]
    Ch. Frougny, Representations of numbers and finite automata. Technical report LITP 90-47, to appear.Google Scholar
  8. [8]
    M. Latteux and E. Timmerman, Rational ω-transductions. Proceedings of MFCS, L.N.C.S. 452, 263–277, 1990.Google Scholar
  9. [9]
    J. Leguy, Transductions rationnelles décroissantes. R.A.I.R.O. Informatique Théorique 15, 141–148, 1981.Google Scholar
  10. [10]
    J. Sakarovitch, Deux remarques sur un théorème de S. Eilenberg. R.A.I.R.O Informatique Théorique 17, 23–48, 1983.Google Scholar
  11. [11]
    W. Thomas, Automata and quantifier hierarchies. In “Formal properties of finite automata and applications”, L.N.C.S. 386, 104–119, 1988.Google Scholar
  12. [12]
    W. Thomas, Infinite trees and automata definable relations over ω-words. Proceedings of STACS, L.N.C.S. 452, 407–415, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Christiane Frougny
    • 1
  • Jacques Sakarovitch
    • 2
  1. 1.Litp and Université Paris VIIIFrance
  2. 2.Litp, Institut Blaise PascalParis Cedex 05France

Personalised recommendations