Fish and Shrink. A next step towards efficient case retrieval in large scaled case bases

  • Jörg Walter Schaaf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1168)


This paper deals with the retrieval of useful cases in case-based reasoning. It focuses on the questions of what ”useful” could mean and how the search for useful cases can be organized. We present the new search algorithm Fish and Shrink that is able to search quickly through the case base, even if the aspects that define usefulness are spontaneously combined at query time. We compare Fish and Shrink to other algorithms and show that most of them make an implicit closed world assumption. We finally refer to a realization of the presented idea in the context of the prototype of the FABEL-Project.

The scenery is as follows. Previously collected cases are stored in a large scaled case base. An expert describes his problem and gives the aspects in which the requested case should be similar. The similarity measure thus given spontaneously shall now be used to explore the case base within a short time, shall present a required number of cases and make sure that none of the other cases is more similar.

The question is now how to prepare the previously collected cases and how to define a retrieval algorithm which is able to deal with spontaneously user-defined similarity measures.


Case-Based Reasoning case retrieval case representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. D. Ashley and E. L. Rissland, ‘Waiting on weighting: A symbolic least commitment approach', in Proceedings of the Seventh National Conference on Artificial Intelligence, pp. 239–244. Morgan Kaufmann, St. Paul, MN, (1988).Google Scholar
  2. 2.
    J. L. Bentley, ‘Multidimensional binary search trees used for associative searching', Communications of the ACM, 18(9), 509–517, (September 1975).Google Scholar
  3. 3.
    Carl-Helmut Coulon, ‘Automatic indexing, retrieval and reuse of topologies in complex designs', in Proceeding of the sixth International Conference on Computing in Civil and Building Engineering, eds., Peter Jan Pahl and Heinrich Werner, pp. 749–754, Berlin, (1995). Balkema, Rotterdam.Google Scholar
  4. 4.
    Carl-Helmut Coulon and Ralf Steffens, ‘Comparing fragments by their images', in Similarity concepts and retrieval methods, ed., Angi Voß, 36–44, GMD, Sankt Augustin, (1994).Google Scholar
  5. 5.
    E. A. Feigenbaum, ‘The simulation of natural learning behaviour', in Computers and Thought, eds., E. A. Feigenbaum and J. Feldman, 297–309, McGraw-Hill, New-York, (1963).Google Scholar
  6. 6.
    Klaus Goos, Fallbasiertes Klassifizieren. Methoden, Integration und Evaluation, Ph.D. dissertation, Bayerische Julius-Maximilians-Universität, Würzburg, 1995.Google Scholar
  7. 7.
    Wolfgang Gräther, ‘Computing distances between attribute-value representations in an associative memory”, in Similarity concepts and retrieval methods, ed., Angi Voß, 12–25, GMD, Sankt Augustin, (1994).Google Scholar
  8. 8.
    Janet L. Kolodner, Case-Based Reasoning, Morgan Kaufmann, San Mateo, 1993.Google Scholar
  9. 9.
    M. Lenz and H. D. Burkhard, ‘Retrieval ohne Suche', in Fallbasiertes Schlieβen — Grundlagen und Anwendungen, eds., Brigitte Bartsch-Spörl, Dietmar Janetzko, and Stefan Wess, pp. 1–10, Universität Kaiserslautern, Germany, (1995). Zentrum für Lernende Systeme und Anwendungen, Fachbereich Informatik.Google Scholar
  10. 10.
    Jörg W. Schaaf, ‘Gestalts in CAD-plans, Analysis of a Similarity Concept', in AI in Design'94, eds., J. Gero and F. Sudweeks, pp. 437–446, Lausanne, (1994). Kluwer Academic Publishers, Dordrecht.Google Scholar
  11. 11.
    Jörg W. Schaaf, ‘ASPECT: Über die Suche nach situationsgerechten Fällen im Case Based Reasoning', Fabel-Report 31, GMD, Sankt Augustin, (1995).Google Scholar
  12. 12.
    Jörg Walter Schaaf, ‘“Fish and Sink”; An Anytime-Algorithm to Retrieve Adequate Cases', in Case-based reasoning research and development: first International Conference, ICCBR-95, proceedings, eds., Manuela Veloso and Agnar Aamodt, 538–547, Springer, Berlin, (October 1995).Google Scholar
  13. 13.
    Barbara Schmidt-Belz, ‘Scenario of FABEL Prototype 3 Supporting Architectural Design', Fabel-Report 40, GMD, Sankt Augustin, (1995).Google Scholar
  14. 14.
    S. Skiena, Implementing Discrete Mathematics, Addision-Wesley Publishing Co., 1990.Google Scholar
  15. 15.
    Ralf Steffens, Kantenreduktion in ASPECT-Fallbasen, Master's thesis, Universität Bonn, 1995. Diplomarbeit in der Entstehung.Google Scholar
  16. 16.
    Dagmar Steinert, Effiziente Zugriffsstrukturen für die ähnlichkeitsbasierte Vorauswahl von Fällen, Master's thesis, Lehrstuhl für Informatik VI (KI) der Universität Würzburg, 1993.Google Scholar
  17. 17.
    S. Wess, K.D. Althoff, and G. Derwand, ‘Improving the retrieval step in case-based reasoning', in Pre-Prints First European Workshop on Case-Based reasoning, Universität Kaiserslautern, Germany, (1993). Zentrum für Lernende Systeme und Anwendungen, Fachbereich Informatik.Google Scholar
  18. 18.
    M. Wolverton and B. Hayes-Roth, ‘Retrieving semantically distant analogies with knowledge-directed spreading activation.', Technical Report KSL 94-19, Knowledge Systems Laboratory, Stanford University, (March 1994).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jörg Walter Schaaf
    • 1
  1. 1.Artificial Intelligence Research DivisionGMDSankt AugustinGermany

Personalised recommendations