Advertisement

Semantics, composition and net properties of algebraic high-level nets

  • Cristian Dimitrovici
  • Udo Hummert
  • Laure Petrucci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 524)

Abstract

The aim of this paper is the study of semantics, compositionality and net properties (as quasi-liveness of transitions, boundedness of places, termination of nets, deadlocks, coverness) of algebraic high-level nets in a categorical framework. We show that the algebraic high-level nets can be composed in a elegant manner using colimits and especially pushouts. We define two kinds of semantics for algebraic high-level nets: the standard semantics and normed scheme semantics, prove that both semantics are compositional, and study in which way the above net properties can be analyzed.

Keywords

coloured nets morphisms net invariants and properties algebraic net schemes and high-level nets morphisms of algebraic high-level nets normed scheme semantics net properties of high-level nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. Bibliography

  1. /BJP89/.
    G. Berthelot, C. Johnen, L.Petrucci: PAPETRI: Poste d'Analyse des réseaux de PETRI. Rapport de Recherche LRI 527, Université de Paris-Sud, 1989.Google Scholar
  2. /BP89/.
    G. Berthelot, L. Petrucci: Putting algebraic nets into practice. Internal report CEDRIC-IIE, 1989.Google Scholar
  3. /DiHu89a/.
    C. Dimitrovici, U. Hummert: Semantische Konstruktionen und Kategorien algebraischer Netzschemata. Technische Report 12, TU Berlin 1989.Google Scholar
  4. /DiHu89b/.
    C. Dimitrovici, U. Hummert: Kategorielle Konstruktionen für algebraische Petrinetze. Technische Report 23, TU Berlin 1989.Google Scholar
  5. /EHH89/.
    H. Ehrig, A. Heise, U. Hummert: Algebraic High-Level Nets with Capacities. Technische Report, TU Berlin 1989.Google Scholar
  6. /EM85/.
    H. Ehrig, B. Mahr: Fundamentals of Algebraic Specifications 1. Springer Verlag, 1985.Google Scholar
  7. /EM90/.
    H. Ehrig, B. Mahr: Fundamentals of Algebraic Specifications 2. Springer Verlag, 1990.Google Scholar
  8. /Hu87/.
    U. Hummert: High-Level-Netze. Technische Report 10, TU Berlin 1987.Google Scholar
  9. /Hu89/.
    U. Hummert: Algebraische Theorie von High-Level-Netzen. Doktorarbeit, TU Berlin 1989.Google Scholar
  10. /Je81/.
    K. Jensen: Colored Petri Nets and the Invariant Method. TCS 14, 1981, pp. 317–336.Google Scholar
  11. /Je87/.
    K. Jensen: Colored Petri Nets. Advances in Petri Nets 1986, LNCS 254, 1987, pp. 248–299.Google Scholar
  12. /ML71/.
    S. MacLane: Categories for the Working Mathematician. Springer Verlag, 1971.Google Scholar
  13. /MM88/.
    J. Meseguer, U. Montanari: Petri Nets Are Monoids. Stanford Research Institute, Report SRI CSL-88-3, 1988.Google Scholar
  14. /MV86/.
    G. Memmi, J. Vautherin: Analysing Petri Nets by the Invariant Method. Rapport de Recherche LRI 319, Université de Paris-Sud, 1986.Google Scholar
  15. /Re85a/.
    W. Reisig: Petri Nets. Springer Verlag, 1985.Google Scholar
  16. /Re85b/.
    W. Reisig: Petri Nets with Individual Tokens. TCS 41, 1985, pp. 185–213.Google Scholar
  17. /Va85/.
    J. Vautherin: Un modèle algébrique, basé sur les réseaux de Petri, pour l'étude des systèmes parallèles. Thèse de doctorat d'ingénieur, Université de Paris-Sud, 1985.Google Scholar
  18. /Va87/.
    J. Vautherin: Parallel Systems Specifications with Colored Petri Nets and Algebraic Specifications. Advances in Petri Nets 1987, LNCS 266, p. 293–308.Google Scholar
  19. /Wi87/.
    G. Winskel: Petri Nets, Algebras, Morphisms, and Compositionality. Inf. and Comp. 72, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Cristian Dimitrovici
    • 1
  • Udo Hummert
    • 1
  • Laure Petrucci
    • 2
  1. 1.Technische Universität BerlinBerlin 10
  2. 2.MASI tour 65Université Pierre et Marie Curie (Paris 6)Paris cedex 05

Personalised recommendations