ConQuer: A conceptual query language

  • A. C. Bloesch
  • T. A. Halpin
Session 3: Query Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1157)


Relational query languages such as SQL and QBE are less than ideal for end user queries since they require users to work explicitly with structures at the relational level, rather than at the conceptual level where they naturally communicate. ConQuer is a new conceptual query language that allows users to formulate queries naturally in terms of elementary relationships, and operators such as “and”, “not” and “maybe”, thus avoiding the need to deal explicitly with implementation details such as relational tables, null values, and outer joins. While most conceptual query languages are based on the Entity-Relationship approach, ConQuer is based on Object-Role Modeling (ORM), which exposes semantic domains as conceptual object types, thus allowing queries to be formulated in terms of paths through the information space. This paper provides an overview of the ConQuer language.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auddino, A., Amiel, E. & Bhargava, B. 1991 ‘Experiences with SUPER, a Database Visual Environment', DEXA'91 Database and Expert System Applications, pp.172–178Google Scholar
  2. 2.
    Date, C.J. 1996, ‘Aggregate functions', Database Prog. & Design, vol. 9, no. 4, Miller Freeman, San Mateo CA, pp. 17–19.Google Scholar
  3. 3.
    Date, C.J. & Darwen, H. 1992, Relational Database: writings 1989–1991, Addison-Wesley, Reading MA, esp. Chs 17–20.Google Scholar
  4. 4.
    De Troyer, O. & Meersman, R. 1995, 'A logic framework for a semantics of object oriented data modeling', OOER'95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, no. 1021, pp. 238–49.Google Scholar
  5. 5.
    Halpin, T.A. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice-Hall, Sydney, Australia.Google Scholar
  6. 6.
    Halpin, T.A. & Orlowska, M.E. 1992, ‘Fact-oriented modelling for data analysis', Journal of Inform. Systems, vol. 2, no. 2, pp. 1–23, Blackwell Scientific, OxfordGoogle Scholar
  7. 7.
    Halpin, T.A. & Proper, H.A. 1995, 'subtyping and polymorphism in Object-Role Modeling', Data and Knowledge Engineering, vol. 15, Elsevier Science, pp. 251–81.Google Scholar
  8. 8.
    Halpin, T.A. & Proper, H. A. 1995, 'Database schema transformation and optimization', OOER'95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, no. 1021, pp. 191–203.Google Scholar
  9. 9.
    Hofstede, A.H.M. ter, Proper, H.A. & Weide, Th.P. van der 1993, ‘Formal definition of a conceptual language for the description and manipulation of information models', Information Systems, vol. 18, no. 7, pp. 489–523.Google Scholar
  10. 10.
    Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S., 1995, ConceptBase—a Deductive Object Base for Meta Data Management, Journal of Intelligent Information Systems, Special Issue on Advances in Deductive Object-Oriented Databases, vol. 4, no. 2, 167–192.Google Scholar
  11. 11.
    Lawley, M. & Topor R. 1994, ‘A Query Language for EER Schemas', ADC'94 Proceedings of the 5th Australian Database Conference, Global Publications Service, pp. 292–304.Google Scholar
  12. 12.
    Meersman, R. 1982, ‘The RIDL conceptual language', Research report, Int. Centre for Information Analysis Services, Control Data Belgium, Brussels, Belgium, 1982.Google Scholar
  13. 13.
    Mylopoulos, J., Borgida, A., Jarke, M. & Koubarakis, M., 1990, Telos: a language for representing knowledge about information systems, ACM Transactions Information Systems vol. 8, no 4.Google Scholar
  14. 14.
    Parent, C. & Spaccapietra, S. 1989, ‘About Complex Entities, Complex Objects and Object-Oriented Data Models', Information System Concepts—An In-depth Analysis, Falkenberg, E.D. & Lindgreen, P, Eds., North Holland, pp. 347—360Google Scholar
  15. 15.
    Proper, H.A. & Weide, Th. P. van der 1995, ‘Information disclosure in evolving information systems: taking a shot at a moving target', Data and Knowledge Engineering, vol. 15, no. 2, pp. 135–68, Elsevier Science.Google Scholar
  16. 16.
    Rosengren, P. 1994, 'Using Visual ER Query Systems in Real World Applications', CAiSE'94: Advanced Information Systems Engineering, Springer LNCS, no. 811, pp. 394–405.Google Scholar
  17. 17.
    Staudt, M., Nissen, H.W., Jeusfeld, M.A. 1994, Query by Class, Rule and Concept. Applied Intelligence, Special Issue on Knowledge Base Management, vol. 4, no. 2, pp. 133–157Google Scholar
  18. 18.
    Wintraecken, J.J.V.R. 1990, The NIAM Information Analysis Method: Theory and Practice, Kluwer, Deventer, The Netherlands.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • A. C. Bloesch
    • 1
  • T. A. Halpin
    • 1
  1. 1.Asymetrix CorporationBellevueUSA

Personalised recommendations