A simple description of Kerdock codes

  • Claude Carlet
Section III Combinatorial And Algebraic Aspects
Part of the Lecture Notes in Computer Science book series (LNCS, volume 388)


In reference (1).R.D.Baker gives a convenient characterisation of Preparata codes.

We here give a proof of his description and a similar one for Kerdock codes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Ronald D. Baker, Jacubus H. Van Lint and Richard M. Wilson "On the Preparata and Goethals codes" IEEE Trans Inform Theory Vol IT.29, pp 342–345,May 1983CrossRefGoogle Scholar
  2. (2).
    P.Camion "codes de Preparata et codes de Kerdock" théorie des codes ENSTA (1979) pp 21–29Google Scholar
  3. (3).
    W.M. Kantor "On the inequivalence of generalized Preparata codes" IEEE Trans Inform Theory, Vol IT.29 pp 345–348,May 1983.CrossRefGoogle Scholar
  4. (4).
    A.M. Kerdock "A class of low-rate non linear codes" Information and Control, 20 (1972) pp182–187CrossRefGoogle Scholar
  5. (5).
    F.J.Mac Williams and N.J.Sloane. "The theory of error-correcting codes" Amsterdam,North Holland.Google Scholar
  6. (6).
    F.P. Preparata, "A class of optimum non linear double-error correcting codes" Information and Control, 13 (1968) pp 378–400CrossRefGoogle Scholar
  7. (7).
    J.H. Van Lint "Kerdock codes and Preparata codes" Congressus Numerantium vol 39 (1983) pp 25–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Claude Carlet
    • 1
  1. 1.L.I.T.P.Paris cedex 05

Personalised recommendations