Advertisement

A distributed spanning tree algorithm

  • Karl Erik Johansen
  • Ulla Lundin Jørgensen
  • Svend Hauge Nielsen
  • Søren Erik Nielsen
  • Sven Skyum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 312)

Abstract

We present a distributed algorithm for constructing a spanning tree for connected undirected graphs. Nodes correspond to processors and edges correspond to two way channels. Each processor has initially a distinct identity and all processors perform the same algorithm. Computation as well as communication is asyncronous. The total number of messages sent during a construction of a spanning tree is at most 2E+3NlogN. The maximal message size is loglogN+log(maxid)+3, where maxid is the maximal processor identity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Francez N.: Distributed termination. ACM Trans. on Programming Languages and Systems. Vol. 2. 1980, pages 42–55.CrossRefGoogle Scholar
  2. [2].
    Gallager R. G., Humblet P. A., Spira P.M.: A Distributed Algorithm for Minimum-Weight Spanning Trees. ACM Trans. on Programming Languages and Systems. Vol. 5. 1983, pages 66–77.CrossRefGoogle Scholar
  3. [3]
    Humblet P. A.: A Distributed Algorithm for Minimum Weight Directed Spanning Trees. IEEE Trans. on Communications. Vol 31. 1983, pages 756–762.CrossRefGoogle Scholar
  4. [4]
    Johansen K.E., Jørgensen U. L., Nielsen S. H., Nielsen S. E.: Konstruktion og analyse af distibuerede algoritmer til beregning af et udspændende træ. (In Danish) Technical report, March 1986, Aarhus University.Google Scholar
  5. [5]
    Korach E., Markowitz M.: Algorithms for Distributed Spanning Tree Construction in Dynamic Networks (Extended Abstract) TECHNION Technical Report #401, February 1986.Google Scholar
  6. [6]
    Korach E., Moran S., Zaks S.: Tight Lower and Upper Bounds for some Distributed Algorithms for a Complete Network of Processors, Proc. of 3. Ann ACM PODC 1984, pages. 199–207.Google Scholar
  7. [7]
    Korach E., Moran S., Zaks S.: The Optimality of Distributive Constructions of Minimum Weight and Degree Restricted Spanning Trees in a Complete Network of Processors. Proc. of 4. Ann. ACM PODC, Ontario 1985, pages 277–286.Google Scholar
  8. [8]
    Lavellee I., Roucairol G.: A Fully Distributed (Minimal) Spanning Tree Algorithm. Inf. Proc. Letters 23. 1986, pages 55–62.CrossRefGoogle Scholar
  9. [9]
    Santoro N.: On the Message Complexity of Distributed Problems. Int. Journal of Comp. and Inf. Sci. 13. 1984, pages 131–147.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Karl Erik Johansen
    • 1
  • Ulla Lundin Jørgensen
    • 1
  • Svend Hauge Nielsen
    • 1
  • Søren Erik Nielsen
    • 1
  • Sven Skyum
    • 1
  1. 1.Computer Science DepartmentAarhus UniversityAarhus CDenmark

Personalised recommendations