Towards a connection procedure with built in theories

  • Uwe Petermann
Selected Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 478)


It is shown how to build in open first-order theories into a proof procedure based on the connection method accepting arbitrary formulas preserving completeness and soundness of the procedure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. Bibliography

  1. [AE]
    Auffray I., Enjalbert P., Modal theorem proving using equational methods, Rep. 88–11, Lab. d'Informatique, Univ. de Caen, 1988.Google Scholar
  2. [BB]
    K.H. Blaesius, H.J. Bueckert (Eds.), Deduction systems (in german), Oldenbourg-Verlag, Muenchen, Wien, 1987.Google Scholar
  3. [Bi1]
    Bibel W., Computationally improved versions of Herbrand's theorem, J. Stern Ed., Proc. of Herbrand Symp., North Holland Publ. Comp., 1982.Google Scholar
  4. [Bi2]
    —, Automated theorem proving, Verlag Vieweg, 1982, 1987.Google Scholar
  5. [He]
    Herbrand J., Recherches sur la théorie de la démonstration, Travaux Soc. Sci. et Lettres Varsovie, Cl. 3 (Math. Phys.) (1930), 128pp, English transl. in Goldfarb W.D. (Ed.), Jaques Herbrand, Logical writings, Reidel, Dortrecht 1971.Google Scholar
  6. [Pe1]
    Petermann U., An extended Herbrand Theorem for First-order Theories with Equality Interpreted in Partial Algebras, in Kreczmar A., Mirkowska G., Eds. Proc. Math. Found. of Comp. Sci., LNCS 379.Google Scholar
  7. [Pe2]
    —, Building in Theories into a first-order proof procedure based on the connection method, Preprint, to appear.Google Scholar
  8. [Sti]
    Stickel M., Automated deduction by theory resolution, J. Autom. Reasoning, 1, 4 (1985), 333–356.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Uwe Petermann
    • 1
  1. 1.Dept. of InformaticsKarl Marx UniversityLeipzigGermany

Personalised recommendations