Advertisement

A note on categorical datatypes

  • G. C. Wralth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 389)

Abstract

It is shown how Hagino's categorical datatypes can be expressed in the polymorphic typed λ-calculus. This gives a way of passing from a description of a datatype in terms of its universal properties, to a representation in terms of λ-expressions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.B. Bruce, A.R. Meyer (1984) The semantics of second order polymorphic lambda-calculus. SLNCS 173 pp 131–144Google Scholar
  2. J.Bell (1988) Toposes and Local set Theories. Oxford University PressGoogle Scholar
  3. T. Coquand, V. Breazu-Tannen (1988) Extensional Models of Polymorphism. T.C.S. 59 pp 85–114Google Scholar
  4. Jon Fairbairn (1985) Design and Implementation of a simple typed language based on the lambda-calculus. University of Cambridge Technical Report No. 75Google Scholar
  5. T. Hagino (1987) A Typed Lambda Calculus with Categorical Type Constructors. Preprint.Google Scholar
  6. T. Hagino (1987) A Categorical Programming Language. Thesis. Edinburgh University.Google Scholar
  7. D.B.MacQueen, R.Sethi, G.Plotkin (1984) An Ideal Model for Recursive Polymorphic Types. 11-th Annual ACM Symposium on the Principles of Programming Languages.Google Scholar
  8. P. Mendler (1987) Inductive Definitions in type Theory. Thesis — Cornell University.Google Scholar
  9. Mendler, Constable (1985) Recursive Definitions in Type Theory. LNCS 193 pp 61–78Google Scholar
  10. J.C. Reynolds (1984) Polymorphism is not Set-Theoretic. SLNCS 173 pp 145–156Google Scholar
  11. J.C. Reynolds (1985) Three approaches to type structure. TAPSOFT. SLNCS 185 pp 97–138Google Scholar
  12. A.Pitts (1987) Polymorphism is Set-Theoretic Constructively. Preprint. University of Sussex.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • G. C. Wralth
    • 1
  1. 1.Department of MathematicsUniversity of SussexUK

Personalised recommendations