A note on categorical datatypes

  • G. C. Wralth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 389)


It is shown how Hagino's categorical datatypes can be expressed in the polymorphic typed λ-calculus. This gives a way of passing from a description of a datatype in terms of its universal properties, to a representation in terms of λ-expressions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K.B. Bruce, A.R. Meyer (1984) The semantics of second order polymorphic lambda-calculus. SLNCS 173 pp 131–144Google Scholar
  2. J.Bell (1988) Toposes and Local set Theories. Oxford University PressGoogle Scholar
  3. T. Coquand, V. Breazu-Tannen (1988) Extensional Models of Polymorphism. T.C.S. 59 pp 85–114Google Scholar
  4. Jon Fairbairn (1985) Design and Implementation of a simple typed language based on the lambda-calculus. University of Cambridge Technical Report No. 75Google Scholar
  5. T. Hagino (1987) A Typed Lambda Calculus with Categorical Type Constructors. Preprint.Google Scholar
  6. T. Hagino (1987) A Categorical Programming Language. Thesis. Edinburgh University.Google Scholar
  7. D.B.MacQueen, R.Sethi, G.Plotkin (1984) An Ideal Model for Recursive Polymorphic Types. 11-th Annual ACM Symposium on the Principles of Programming Languages.Google Scholar
  8. P. Mendler (1987) Inductive Definitions in type Theory. Thesis — Cornell University.Google Scholar
  9. Mendler, Constable (1985) Recursive Definitions in Type Theory. LNCS 193 pp 61–78Google Scholar
  10. J.C. Reynolds (1984) Polymorphism is not Set-Theoretic. SLNCS 173 pp 145–156Google Scholar
  11. J.C. Reynolds (1985) Three approaches to type structure. TAPSOFT. SLNCS 185 pp 97–138Google Scholar
  12. A.Pitts (1987) Polymorphism is Set-Theoretic Constructively. Preprint. University of Sussex.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • G. C. Wralth
    • 1
  1. 1.Department of MathematicsUniversity of SussexUK

Personalised recommendations