Advertisement

Molecular catalysis by polyammonium receptors

  • Franz P. Schmidtchen
Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 132)

Abstract

Polyammonium salts are particularly well suited to the construction of host-guest systems possessing catalytic activity (molecular catalysts). In addition to the ease and variability in the build up of molecular frameworks inherent in this class of compounds the hydrophilicity of the charged group represents their most prominent aspect. Thus water solubility of host can be retained although very hydrophobic moieties have to be incorporated into its structure in order to effect substrate binding. The range of water soluble host systems span from heterocyclophanes, azacrown ethers, macrocyclic cage compounds to dimeric steroids. Hydrolytic reactions of carboxylic- or phosphoryl derivatives, decarboxylations as well as nucleophilic aliphatic- and aromatic substitutions are the only reaction types known so far to be amenable to catalysis by polyammonium hosts. The rate enhancement factors in these truely catalytic reactions generally amount to 10–100 with a few cases reaching a factor of 1000 or more. Compared to the natural enzymes this still appears to be quite modest, but as simple as these nonproteinogenic molecular catalysts are they in fact mimic qualitatively many of the essential features of the biocatalysts successfully. Moreover they bear the potential of rational redesign in order to improve their catalytic properties. Thus it seems likely that the present first generation of polyammonium catalysts will evolve to more sophisticated systems including serveral binding- or catalytically active moieties. This synthetically demanding path to modular catalysts rather than the development of completely novel host structures appears to be the more promising approach to the enhancement of selectivity in chemical systems, which in turn is the underlying motivation to design artificial polyammonium molecular catalysts.

Keywords

Ammonium Salt Host Molecule Rate Enhancement Noncovalent Complex Host Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

H References

  1. 1. a)
    Jencks, W. P.: Binding Energy, Specificity, and Enzymic Catalysis: The Circe Effect, in: Adv. Enzymol. (ed. Meister, A.) 43, 219 (1975)PubMedGoogle Scholar
  2. 1. b)
    Lipscomb, W. N.: Acc. Chem. Res. 15, 232 (1982)CrossRefGoogle Scholar
  3. 2. a)
    Somogyi, B., Welch, G. R., Damjanovich, S.: Biochim. Biophys. Acta 768, 81 (1984)PubMedGoogle Scholar
  4. 2. b)
    Stackhouse, J., Nambiar, K. P., Burbaum, J. J., Stauffer, D. M., Benner, S. A.: J. Am. Chem. Soc. 107, 2757 (1985)CrossRefGoogle Scholar
  5. 3.
    Dixon, M., Webb, E. C.: Enzymes, 3rd Ed.; p. 56, Longman, London 1979Google Scholar
  6. 4.
    Schulz, G. E., Schirmer, R. H.: Principles of Protein Structure, Springer Verlag, New York 1979Google Scholar
  7. 5. a)
    Breslow, R.: Science 218, 532 (1982)PubMedGoogle Scholar
  8. 5. b)
    Breslow, R.: Acc. Chem. Res. 13, 170 (1980)CrossRefGoogle Scholar
  9. 6.
    Bender, M. L., Bergeron, R. J., Komiyama, M.: The Bioorganic Chemistry of Enzymatic Catalysis, Chapter 1, John Wiley, New York 1984Google Scholar
  10. 7.
    Borsook, H., Schott, H. F.: J. Biol. Chem. 92, 535 (1931)Google Scholar
  11. 8.
    Ise, N., Okubo, T., Kunugi, S.: Acc. Chem. Res. 15, 171 (1982)CrossRefGoogle Scholar
  12. 9.
    Fendler, J. H.: Pure Appl. Chem. 54, 1809 (1982)Google Scholar
  13. 10.
    Bunton, C. A.: Reactions in micelles and similar self-organized aggregates, in: The Chemistry of Enzyme Action (ed. Page, M. I.) p. 461, Elsevier, Amsterdam 1984Google Scholar
  14. 11. a)
    Hopkins, A., Williams, A.: J. Chem. Soc. Perkin Trans. II, 1983, 891Google Scholar
  15. 11. b)
    Murakami, Y., Nakano, A., Yoshimatsu, A., Uchitomi, K., Matsuda, Y.: J. Am. Chem. Soc. 106, 3613 (1984)CrossRefGoogle Scholar
  16. 12.
    Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd Ed., Wiley, New York 1980Google Scholar
  17. 13.
    Komiyama, M., Bender, M. L.: Cyclodextrins as enzyme models, in: The Chemistry of Enzyme Action (ed. Page, M. I.) p. 505, Elsevier, Amsterdam 1984Google Scholar
  18. 14.
    Knowles, J. R., Boger, J.: J. Am. Chem. Soc. 101, 7631 (1979)CrossRefGoogle Scholar
  19. 15. a)
    Odashima, K., Koga, K., Itai, A., Iitaka, Y.: ibid. 102, 2504 (1980)CrossRefGoogle Scholar
  20. 15. b)
    Diedrich, F., Griebel, D.: ibid. 106, 8024 (1984); ibid. 106, 8037 (1984)CrossRefGoogle Scholar
  21. 16. a)
    Dietrich, B., Fyles, D. L., Fyles, T. M., Lehn, J.-M.: Helv. Chim. Acta 62, 2763 (1979)CrossRefGoogle Scholar
  22. 16. b)
    Dietrich, B., Hosseini, M. W., Lehn, J.-M., Session, R. B.: ibid. 66, 1262 (1983)CrossRefGoogle Scholar
  23. 17.
    Jencks, W. P.: Catalysis in Chemistry and Enzymology, Chapter 2, 3, McGraw-Hill, New York 1969Google Scholar
  24. 18.
    Snell, E. E., DiMari, S. J.: Schiff base intermediates in enzyme catalysis, in: The Enzymes, Vol. II (ed. Boyer, P.) 3rd Ed., p. 335, Academic Press, New York 1970Google Scholar
  25. 19.
    Tabushi, I., Kimura, Y., Yamamura, K.: J. Am. Chem. Soc. 100, 1304 (1978)CrossRefGoogle Scholar
  26. 20.
    Tabushi, I., Kimura, Y., Yamamura, K.: ibid. 103, 6486 (1981)CrossRefGoogle Scholar
  27. 21.
    Fersht, A. R.: Pure Appl. Chem. 54 1819 (1982)Google Scholar
  28. 22.
    Fersht, A. R.: Enzyme Structure and Mechanism, p. 95, 261, Freeman, San Francisco 1977Google Scholar
  29. 23.
    Knowles, J. R., Albery, W. J.: Acc. Chem. Res. 10, 105 (1977)CrossRefGoogle Scholar
  30. 24.
    Rosenberry, T. L.: Adv. Enzymol. 43, 103 (1975)PubMedGoogle Scholar
  31. 25.
    Stoops, J. K., Horgan, D. J., Runnegar, M. T. C., de Jersey, J., Webb, E. C., Zerner, B.: Biochemistry 8, 2026 (1969)CrossRefPubMedGoogle Scholar
  32. 26.
    Schneider, H. J., Busch, R.: Angew. Chem. 96, 910 (1984); Angew. Chem. Int. Ed. Engl. 23, 911 (1984)Google Scholar
  33. 27. a)
    Tabushi, I., Yamamura, K., Fujita, K., Kawakubo, H.: J. Am. Chem. Soc. 101, 1019 (1979)CrossRefGoogle Scholar
  34. 27. b)
    Tabushi, I.: New insights into the host-guest solvent interaction of some inclusion complexes. Reaction path control in cyclodextrin inclusion as a lyase model: Solvolysis of β-bomethylnaphthalene, in Advances in Solution Chemistry, (ed. Betini, I., Lunazzi, L., Dei, A.) p. 221, Plenum, New York 1981Google Scholar
  35. 28.
    Mock, W. L., Irra, T. A., Wepsiec, J. P., Manimaran, T. L.: J. Org. Chem. 48, 3619 (1983)CrossRefGoogle Scholar
  36. 29.
    Vögtle, F., Franke, J.: Angew. Chem. 97, 224 (1985); Angew. Chem. Int. Ed. Engl. 24, 219 (1985)Google Scholar
  37. 30.
    Tabushi, K., Kimura, Y., Yamamura, K.: Facilitated formation of tetrahedral intermediate in esterase action by a water soluble heterocyclophane in: Chemical Approaches to Understanding Enzyme Catalysis, (ed. Green B. S., Ashani, Y., Chipman, D.) p. 328, Elsevier, Amsterdam 1982Google Scholar
  38. 31.
    Kirby, G. W., Ogunkoya, L.: J. Chem. Soc. 1965, 6914Google Scholar
  39. 32.
    Vögtle, F., Müller, W. M.: Angew. Chem. 96, 711 (1984); Angew. Chem. Int. Ed. Engl. 23, 712 (1984)Google Scholar
  40. 33.
    Murakami, Y., Nakano, A., Akiyoshi, K., Fukuya, K.: J. Chem. Soc. Perkin Trans. I, 1981, 2800Google Scholar
  41. 34.
    Murakami, Y.: Top. Curr. Chem. 115, 107 (1983)Google Scholar
  42. 35.
    Hol, W. G. J., van Duijnen, P. T., Berendsen, H. J. C.: Nature 273, 443 (1978)CrossRefPubMedGoogle Scholar
  43. 36. a)
    Cotton, F. A., LaCour, T., Hazen, E. E. Jr., Legg, M. L.: Biochim. Biophys. Acta 481, 1 (1977)PubMedGoogle Scholar
  44. 36. b)
    Osherhoff, N., Brautigan, D. L., Margoliash, E.: Proc. Nat. Acad. Sci. USA, 77, 4439 (1980)PubMedGoogle Scholar
  45. 36. c)
    Anderson, D. G., Hammes, G. G., Walz, F. G.: Biochemistry 7, 1637 (1968)CrossRefPubMedGoogle Scholar
  46. 37.
    Pierre, J.-L., Baret, P.: Bull. Soc. Chim. France 1983, II, 367Google Scholar
  47. 38.
    Stern, K. H., Amis, E. S.: Chem. Rev. 59, 1 (1959)CrossRefGoogle Scholar
  48. 39. a)
    Lehn, J.-M., Graf, E.: J. Am. Chem. Soc. 97, 5022 (1975)CrossRefGoogle Scholar
  49. 39. b)
    Graf, E., Lehn, J.-M.: Helv. Chim. Acta 64, 1040 (1981)CrossRefGoogle Scholar
  50. 40.
    Schmidtchen, F. P.: Chem. Ber. 113, 864 (1980)Google Scholar
  51. 41.
    Schmidtchen, F. P.: Angew. Chem. 89, 751 (1977); Angew. Chem. Int. Ed. Engl. 16, 720 (1977)Google Scholar
  52. 42.
    Schmidtchen, F. P., Müller, G.: J. Chem. Soc. Chem. Commun. 1984, 1115Google Scholar
  53. 43.
    Schmidtchen, F. P.: Chem. Ber. 114, 597 (1981)Google Scholar
  54. 44.
    Rohrbach, R. P., Rodriguez, L. J., Eyring, E. M., Wojcik, J. F.: J. Phys. Chem. 81, 944 (1977)CrossRefGoogle Scholar
  55. 45.
    Conway, B. E.: Thermodynamic and transport behavior of electrolytes, in: Physical Chemistry (ed. Eyring, H., Henderson, D., Jost, W.) p. 63, Academic Press, New York 1970Google Scholar
  56. 46.
    Parker, A. J.: Chem. Rev. 69, 1 (1969)CrossRefGoogle Scholar
  57. 47.
    Barrett, A. G. M., Lana, J. C. A., Tograie, S.: J. Chem. Soc. Chem. Commun. 1980, 300Google Scholar
  58. 48.
    Schmidtchen, F. P.: Macrotricyclic ammonium salts: enzyme like activity, in: Chemical Approaches to Understanding Enzyme Catalysis, (ed. Green, B. S., Ashani, Y., Chipman, D.) p. 315, Elsevier, Amsterdam 1982Google Scholar
  59. 49.
    Illuminati, G., Mandolini, L., Masci, B.: J. Am. Chem. Soc. 97, 4960 (1975)CrossRefGoogle Scholar
  60. 50.
    Grovenstein, E., Lee, D. E.: ibid. 75, 2639 (1953)CrossRefGoogle Scholar
  61. 51.
    Cristol, S. J., Norris, W. P.: ibid. 75, 2645 (1953)CrossRefGoogle Scholar
  62. 52.
    Schmidtchen, F. P.: Angew. Chem. 93, 469 (1981); Angew. Chem. Int. Ed. Engl. 20, 466 (1981)Google Scholar
  63. 53.
    Schmidtchen, F. P.: J. Chem. Soc. Perkin Trans. II, in the pressGoogle Scholar
  64. 54.
    Kemp, D. S., Paul, K. G.: J. Am. Chem. Soc. 97, 7305 (1975); ibid. 97, 7312 (1975)CrossRefGoogle Scholar
  65. 55.
    Page, M. I.: Angew. Chem. 89, 456 (1977); Angew. Chem. Int. Engl. 16, 449 (1977)Google Scholar
  66. 56.
    Schmidtchen, F. P.: Chem. Ber. 117, 725 (1984)Google Scholar
  67. 57.
    Straub, T. S., Bender, M. L.: J. Am. Chem. Soc. 94, 8875 (1972)CrossRefGoogle Scholar
  68. 58.
    cf. Bunton, C. A., Moffatt, J. R., Rodenas, E.: ibid. 104, 2653 (1982)CrossRefGoogle Scholar
  69. 59.
    Schmidtchen, F. P.: Chem. Ber. 117, 1287 (1984)Google Scholar
  70. 60. a)
    Broxton, T. J., Muir, D. M., Parker, A. J.: J. Org. Chem. 40, 3230 (1975)CrossRefGoogle Scholar
  71. 60. b)
    Broxton, T. J.: Aust. J. Chem. 34, 2313 (1981)Google Scholar
  72. 61. a)
    Gokel, G. W., Dishong, D. M., Schultz, R. A., Gatto, V. J.: Synthesis, 1982, 997Google Scholar
  73. 61. b)
    Kaden, Th. A.: Top. Curr. Chem. 121, 157 (1984)Google Scholar
  74. 62.
    Hosseini, M. W., Lehn, J.-M., Mertes, M. P.: Helv. Chim. Acta 66, 2454 (1983)CrossRefGoogle Scholar
  75. 63.
    Kimura, E., Kodama, M., Yatsunami, T.: J. Am. Chem. Soc. 104, 3182 (1982)CrossRefGoogle Scholar
  76. 64.
    Guthrie, J. P., Cullimore, P. A., McDonald, R. S., O'Leary, S.: Can. J. Chem. 60, 747 (1982)Google Scholar
  77. 65.
    Komiyama, M., Bender, M. L.: J. Am. Chem. Soc. 99, 8021 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Franz P. Schmidtchen
    • 1
  1. 1.Lehrstuhl für Organische Chemie und Biochemie der Technischen Universität MünchenGarchingFRG

Personalised recommendations