Skip to main content

Micromechanics of fracture under static and fatigue loading: Optical interferometry of crack tip craze zones

  • Conference paper
  • First Online:
Crazing in Polymers Vol. 2

Part of the book series: Advances in Polymer Science ((POLYMER,volume 91/92))

Abstract

Brittle failure of many thermoplastics is associated with craze formation and governed by craze breakdown. Optical interferometry is a powerful tool for the investigation of this type of plastic deformation in transparent polymers, especially for the measurement of sizes of single crack tip crazes. The results of interferometric measurements are used in connection with fracture mechanics models and mathematical or numerical methods for calculations of stresses in the microregion at the crack tip and thus giving qualitative and quantitative descriptions of deformation and fracture processes. This is applied to different loading conditions and in the article the following is discussed in detail: craze growth in front of stationary cracks, crazing behavior during continuous crack growth under quasi-static load as well as during normal and retarded fatigue crack propagation. Also micro-mechanical and molecular models are derived from the experimental results, describing the different modes of crack growth behavior in connection with the crazing process. Thus this article contributes to the understanding of the basic processes involved in the fracture of thermoplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

Crack length

a:

Crack speed

da/dN:

Crack propagation rate in fatigue

d:

Displacement of one craze surface

E:

Modulus of elasticity

GI :

Strain energy release rate in mode I

HMW:

High molecular weight

KI :

Stress intensity factor in mode I

KIc :

KI at onset of critical fracture

KIi :

KI at onset of slow crack growth

ΔKI :

Stress intensity factor range in fatigue

Kmax :

Stress intensity factor at upper load in fatigue

Kmin :

Stress intensity factor at lower load in fatigue

LMW:

Low molecular weight

Mw :

Weight average molecular weight

Mn :

Number average molecular weight

NCG:

Normal fatigue crack growth

N:

Cycle number in fatigue

Ne :

Final cycle number at crack jump

n:

Fringe number

n1 :

Fringe number of loaded craze

n0 :

Fringe number of unloaded craze

RCG:

Retarded fatigue crack growth

r:

Coordinate

rp :

Plastic zone size

s:

Craze length

si, se :

Initial and final craze lengths between successive crack jumps

T:

Temperature

t:

Time

Vf :

Fibril volume fraction in a craze

2v(x):

Displacement of elastic-plastic boundary

2v:

Maximum displacement of the craze zone at the crack tip

2vc :

2v at fracture

2v0 :

2v in the unloaded state

2vi, 2ve :

Initial and final value of 2v between successive crack jumps

W:

Specimen width

x, y, z:

Coordinates

ε:

Strain

Λc :

Extension ratio in a craze

λ:

Wave length of light

μb :

Refractive index of bulk polymer

μc :

Refractive index of a loaded craze

μ0 :

Refractive index of an unloaded craze

v:

Poisson's ratio

σ:

Stress

σa :

Average stress along the craze contour

σc :

Craze stress

σt :

Stress at the craze tip

τ0 :

Primordial thickness of bulk polymer to be fibrillated

φ:

Polar coordinate

ω:

Frequency in fatigue

ABS:

Acrylonitrile-butadiene-styrene copolymer

DOP:

Dioctylphthalate

PC:

Polycarbonate

PE:

Polyethylene

PES:

Polyethersulfone

PMMA:

Poly (methyl methacrylate)

POM:

Polyacetale

PS:

Polystyrene

PSF:

Polysulphone

PVC:

Poly (vinyl chloride)

5 References

  1. Kambour RP (1966) J. Polym. Sci. A-2 4: 349

    CAS  Google Scholar 

  2. Bessenov MI, Kuvshinskii EV (1961) Soviet Phys. (Solid State) 3: 1957

    Google Scholar 

  3. Dugdale DS (1960) J. Mech. Phys. Solids 8: 100

    Google Scholar 

  4. Barenblatt GI (1962) Adv. Appl. Mechs. 7: 55

    Google Scholar 

  5. Brown HR, Ward IM (1973) Polymer 14: 469

    CAS  Google Scholar 

  6. Vavakin AS, Kozyrev Yn I, Salganik RL (1976) Mech. Solids 11: 97

    Google Scholar 

  7. Weidemann GW, Döll W (1976) Colloid & Polym. Sci. 254: 205

    Google Scholar 

  8. Griffith AA (1920) Phil. Trans. Roy. Soc. (London) A 221: 163

    Google Scholar 

  9. Irwin GR (1958) In: Flügge S (ed) Handbuch der Physik 6, Springer, Berlin Heidelberg New York, p 551

    Google Scholar 

  10. Liebowitz H (ed) (1968) Fracture — an advanced treatise. Academic, New York, vol I–VII

    Google Scholar 

  11. Sih GC (ed) (1973) Mechanics of fracture, Leyden, Noordhoff, vol 1–4

    Google Scholar 

  12. Cherepanow GP (1979) Mechanics of brittle fracture. McGraw-Hill, New York

    Google Scholar 

  13. Knauss WG (1973) Appl. Mech. Reviews 26: 1

    Google Scholar 

  14. Kambour RP (1973) J. Polym. Sci. Macromol. Revs. 7: 1

    Google Scholar 

  15. Hertzberg RW (1976) Deformation and fracture of engineering materials. John Wiley, New York

    Google Scholar 

  16. Williams JG (1978) Advances in polymer science 27, Springer, Berlin Heidelberg New York, p 67

    Google Scholar 

  17. Kausch HH (1987) Polymer Fracture, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Rooke DP, Cartwright DJ (1976) Compendium of stress intensity factors. HMSO, Hillingdon, London

    Google Scholar 

  19. McClintock FA, Irwin GR (1964) Fracture toughness testing and its applications. ASTM, Philadelphia, ASTM STP 381, p 84

    Google Scholar 

  20. Bilby BA, Cottrell AH, Swinden KH (1963) Proc. Roy. Soc. A 272: 304

    Google Scholar 

  21. Goodier JN, Field FA (1963) In: Drucker DC, Gilman JJ (eds) Fracture of solics. Wiley, New York, p 103

    Google Scholar 

  22. Rice JR (1968) In: Liebowitz H (ed) Fracture — an advanced treatise. Academic, New York, p 191

    Google Scholar 

  23. Muskhelishvili NJ (1953) Some basic problems of the mathematical theory of elasticity. Groningen, Noordhoff, p 340

    Google Scholar 

  24. Schapery RA (1975) Int. J. Fract. 11: 141

    CAS  Google Scholar 

  25. McCartney NL (1977) Int. J. Fract. 13: 641

    Google Scholar 

  26. Passaglia E (1982) Polymer 23: 754

    CAS  Google Scholar 

  27. Rosenfield AR, Dai PK, Hahn GT (1965) In: Yokobori T, Kawasaki T, Swedlow JL (eds) Proc. of the first international conference on fracture. The Japanese Society for Strength and Fracture of Materials, Sendai

    Google Scholar 

  28. Broberg B (1964) J. Appl. Mech. 31: 546

    CAS  Google Scholar 

  29. Kanninen MF (1968) J. Mech. Phys. Solids 16: 215

    Google Scholar 

  30. Lucas RA (1969) Int. J. Solids Structures 5: 175

    Google Scholar 

  31. Doyle MJ (1975) J. Polym. Sci., Phys. Ed. 13: 2429

    CAS  Google Scholar 

  32. Beahan P, Bevis M, Hull D (1972) J. Mater. Sci. 8: 162

    Google Scholar 

  33. Lauterwasser BD, Kramer EJ (1979) Phil. Mag. A 39: 469

    CAS  Google Scholar 

  34. Sommer E (1970) Eng. Fract. Mech. 1: 705

    Google Scholar 

  35. Sommer E, Soltész U (1971) Eng. Fract. Mech. 2: 235

    Google Scholar 

  36. Kambour RP (1962) Nature 195: 1299

    CAS  Google Scholar 

  37. Kambour RP (1964) Polymer 5: 107

    Google Scholar 

  38. Kambour RP (1964) J. Polym. Sci. A 2: 4159

    CAS  Google Scholar 

  39. Pitman GL, Ward IM (1979) Polymer 20: 895

    CAS  Google Scholar 

  40. Wiley RH, Brauer GM (1948) J. Polym. Sci. 3: 455, 647

    CAS  Google Scholar 

  41. Kambour RP (1964) J. Polym. Sci. A 2: 4165

    CAS  Google Scholar 

  42. Weidmann GW, Döll W (1977), In: The physics of non-crystalline Solids, Frischat GH (ed) Fourth intern. conference Clausthal-Zellerfeld 1976, Trans. Tech. Publications, Aedermannsdorf, p 606

    Google Scholar 

  43. Hine PJ, Duckett RA, Ward IM (1982) Polymer 22: 1745

    Google Scholar 

  44. Brown HR, Stevens G (1978) J. Mater. Sci. 13: 2373

    CAS  Google Scholar 

  45. Seidelmann U, Könczöl L, Schinker MG, Döll W (1979) Spannungs-Verformungsverhalten verstreckter Molekülbündel an Rißspitzen, Z2/79, Fraunhofer-Institut für Werkstoffmechanik (IWM), Freiburg

    Google Scholar 

  46. Kambour RP (1968) Polym. Eng. Sci. 8: 281

    CAS  Google Scholar 

  47. Knight AC (1965) J. Polym. Sci. A 3: 1845

    CAS  Google Scholar 

  48. Kramer EJ (1979) In: Andrews EH (ed) Development in polymer fracture. Appl. Sci., Barking (UK)

    Google Scholar 

  49. Donald AM, Kramer EJ, Bubeck RA (1982) J. Polym. Sci., Phys. Ed. 20: 1129

    CAS  Google Scholar 

  50. Wang W-CV, Kramer EJ (1982) J. Mater. Sci. 17: 2013

    CAS  Google Scholar 

  51. Donald AM, Kramer EJ (1981) J. Mater. Sci. 16: 2967

    CAS  Google Scholar 

  52. Donald AM, Kramer EJ (1981) J. Mater. Sci. 16: 2977

    CAS  Google Scholar 

  53. Döll W (1974) Colloid & Polym. Sci. 252: 880

    Google Scholar 

  54. Döll W, Weidmann GW (1976) J. Mater. Sci. 11: 2348

    Google Scholar 

  55. Higushi M (1958) Repts. Research, Inst. Appl. Mech., Kyushi Univ. 6: 173

    Google Scholar 

  56. Berry JP (1961) J. Polym. Sci. 50: 107

    CAS  Google Scholar 

  57. Marshall GP, Culver LE, Williams JG (1969) Plastics and Polymers, February, 75

    Google Scholar 

  58. Beaumont PWR, Young RJ (1975) J. Mater. Sci. 10: 1334

    CAS  Google Scholar 

  59. Schinker MG, Döll W (1980): In: Harding J (ed) Mechanical properties at high rates of strain, Conference Oxford 1979, Conf. Ser. No 47, The Institute of Physics, Bristol, p 224

    Google Scholar 

  60. Marshall GP, Coutts LH, Williams JG (1974) J. Mater. Sci. 9: 1409

    CAS  Google Scholar 

  61. Berry JP (1964) In: Rosen B (ed) Fracture processes in polymeric solids. Interscience, New York, p 195

    Google Scholar 

  62. Döll W (1973) In: Proc. 3rd Intern. Congress on Fracture, München 1973. Verein Deutscher Eisenhüttenleute, Düsseldorf, vol 6 p 515

    Google Scholar 

  63. Evans AG, Wiederhorn SM (1974) Int. J. Fract. 10: 379

    CAS  Google Scholar 

  64. Döll W, Könczöl L (1980) Kunststoffe 70: 563

    Google Scholar 

  65. Döll W, Seidelmann U, Könczöl L (1980) J. Mater. Sci. 15: 2389

    Google Scholar 

  66. Weidmann GW, Döll W (1978) Int. J. Fract. 14: R189

    Google Scholar 

  67. Könczöl L, Schinker MG, Döll W (1981) In: Vorträge der 13. Sitzung des Arbeitskreises Bruchvorgänge, Hannover 1981. DVM Deutscher Verband für Materialprüfung e.V., Berlin, p 246

    Google Scholar 

  68. Ogorkiewicz RM (1970) Engineering properties of thermoplastics, John-Wiley-Interscience, London, p 225

    Google Scholar 

  69. Menges G, Kleinemeier B, Döring F (1979) Plastverarbeiter 30: 755

    CAS  Google Scholar 

  70. Morgan GP, Ward IM (1977) Polymer 18: 87

    CAS  Google Scholar 

  71. Schirrer R, Goett C (1982) J. Mater. Sci. Letters 1: 355

    CAS  Google Scholar 

  72. Fraser RA, Ward IM (1978) Polymer 19: 220

    CAS  Google Scholar 

  73. Döll W, Weidmann GW, Kerkhof F (1979) Matériaux et Techniques 67: 119

    Google Scholar 

  74. Döll W, Könczöl L, Seidelmann U (1979) In: Lüderwald I, Weiss R (eds) Prepr. IUPAC Makro Mainz, 26th Intern. Symposium on Macromolecules 1979. Mainz, vol 3 p 1448

    Google Scholar 

  75. Sternstein SS, Ongchin L, Silvermann A (1969) In: Applied polymer symposia 7. Interscience, New York, p 175

    Google Scholar 

  76. Stuart HA, Markowski G (1963) Werkstoffe und Korosion 14: 825

    Google Scholar 

  77. Menges G, Schmidt H (1967) Kunststoffe 57: 885

    Google Scholar 

  78. Rabinowitz S, Beardmore P (1972) CRC Crit. Rev. Macromol. Sci. 1: 1

    Google Scholar 

  79. Menges G, Rieß R, Suchanek H-J (1974) Kunststoffe 64: 200

    CAS  Google Scholar 

  80. Opfermann J (1978) Investigations of crazing and fracture of amorphous polymers. Institut für Kunststoffverarbeitung (IKV) der TH Aachen, Aachen

    Google Scholar 

  81. Marshall GP, Culver LE, Williams JG (1970) Proc. Roy. Soc. A 319: 165

    CAS  Google Scholar 

  82. Kitagawa M, Motomura K (1974) J. Polym. Sci., Phys. Ed. 12: 1979

    CAS  Google Scholar 

  83. Williams JG, Marshall GP (1975) Proc. Roy. Soc. A 342: 55

    CAS  Google Scholar 

  84. Gent AN (1973) J. Macromol. Sci., Phys. B 8: 597

    Google Scholar 

  85. Argon AS, Hannoosh JG (1976) Phil. Mag. 36: 1196

    Google Scholar 

  86. Kausch HH (1977) Angew. Makromol. Chem. 60/61: 139

    Google Scholar 

  87. Döll W, Schinker MG, Könczöl L (1981) Colloid & Polym. Sci. 259: 171

    Google Scholar 

  88. Trassaert P, Schirrer R (1983) J. Mater. Sci. 18: 3004

    CAS  Google Scholar 

  89. Könczöl L, Döll W (1981) Spannungs-Verformungsverhalten verstreckter Molekülbündel an Rißspitzen, Z4/81. Fraunhofer-Institut für Werkstoffmechanik, (IWM), Freiburg

    Google Scholar 

  90. Döll W, Weidmann GW (1979) Progr. Colloid & Polym. Sci. 66: 291

    Article  Google Scholar 

  91. Schirrer R, Goett C (1981) J. Mater. Sci. 16: 2563

    CAS  Google Scholar 

  92. Döll W (1978) Colloid & Polym. Sci. 256: 904

    Google Scholar 

  93. Döll W (1973) Eng. Fract. Mech. 5: 259

    Google Scholar 

  94. Fuller KNG, Fox PG, Field JE (1974) Proc. Roy. Soc. London A 341: 537

    CAS  Google Scholar 

  95. Döll W (1976) Int. J. Fract. 12: 595

    Google Scholar 

  96. Williams JG (1965) Appl. Mater. Res. 4: 104

    CAS  Google Scholar 

  97. Williams JG (1972) Int. J. Fract. Mech. 8: 393

    Google Scholar 

  98. Johnson FA, Radon JC (1972) Eng. Fract. Mech. 4: 555

    CAS  Google Scholar 

  99. Weichert R, Schönert K (1974) J. Phys. Mech. Solids 22: 127

    Google Scholar 

  100. Fox PG, Fuller KNG (1971) Nature Phys. Sci. 234: 13

    CAS  Google Scholar 

  101. Hertzberg RW, Manson JA (1980) Fatigue of engineering plastics. Academic, New York

    Google Scholar 

  102. Sauer JA, Richardson GC (1980) Int. J. Fract. 16: 499

    CAS  Google Scholar 

  103. Radon JC (1980) Int. J. Fract. 16: 533

    CAS  Google Scholar 

  104. Hertzberg RW, Manson JA, Skibo MD (1975) Polym. Eng. Sci. 15: 252

    CAS  Google Scholar 

  105. Skibo MD, Manson JA, Hertzberg RW, Collins EA (1977) J. Macromol. Sci., Phys. B 14: 525

    Google Scholar 

  106. Rimnac CM, Manson JA, Hertzberg RW, Webler SM, Skibo MD (1981) J. Macromol. Sci., Phys. B 18: 351

    Google Scholar 

  107. Kim SL, Skibo M, Manson JA, Hertzberg RW (1977) Polym. Eng. Sci. 17: 194

    CAS  Google Scholar 

  108. Pitman G, Ward IM (1980) J. Mater. Sci. 15: 635

    CAS  Google Scholar 

  109. Hahn MT, Hertzberg RW, Manson JA, Rimnac CM (1982) J. Mater. Sci. 17: 1533

    CAS  Google Scholar 

  110. Harris JS, Ward IM (1973) J. Mater. Sci. 8: 1655

    CAS  Google Scholar 

  111. Mills NJ, Walker N (1976) Polymer 17: 335

    CAS  Google Scholar 

  112. Schirrer R, Schinker MG, Könczöl L, Döll W (1981) Colloid & Polym. Sci. 259: 812

    CAS  Google Scholar 

  113. Döll W, Schinker MG, Könczöl L (1982) In: Deformation, yield and fracture of polymers, 5th Intern. Conf. Cambridge 1982. The Plastics and Rubber Institute, London, p 20.1

    Google Scholar 

  114. Döll W, Könczöl L, Schinker MG (1983) Polymer 24: 1213

    Google Scholar 

  115. Döll W, Könczöl L, Schinker MG (1982) In: Vorträge der 14. Sitzung des Arbeitskreises Bruchvorgänge, Mühlheim 1982. DVM Deutscher Verband für Materialprüfung e.V., Berlin, p 235

    Google Scholar 

  116. Verheulpen-Heymans N (1979) Polymer 20: 356

    CAS  Google Scholar 

  117. Hertzberg RW, Skibo MD, Manson JA (1979) J. Mater. Sci. 14: 1754

    CAS  Google Scholar 

  118. Williams JG (1977) J. Mater. Sci. 12: 2525

    CAS  Google Scholar 

  119. Williams JG (1979) J. Mater. Sci. 14: 1758

    CAS  Google Scholar 

  120. McEvily AJ jr, Boettner RC, Johnston TL (1964), In: Burke JJ, Reed NL, Weiss V (eds) Fatigue — An Interdisciplinary Approach. Syracuse University Press, Syracuse, NY, p 95

    Google Scholar 

  121. Laird C, Smith GC (1962) Phil. Mag. 7: 847

    CAS  Google Scholar 

  122. Jacoby G, Cramer Ch (1968) Rheologica Acta 7: 23

    CAS  Google Scholar 

  123. Jacoby GH (1969) In: ASTM STP 453. ASTM, Philadelphia, p 147

    Google Scholar 

  124. McMillan JC, Pelloux RM (1967) In: Fatigue crack propagation, ASTM STP 415. ASTM, Philadelphia, p 505

    Google Scholar 

  125. Hertzberg RW (1967) ibidem, In: p 205

    Google Scholar 

  126. Laird C (1967) ibidem, In: p 131

    Google Scholar 

  127. Feltner CE (1967) J. Appl. Phys. 38: 3576

    Google Scholar 

  128. Elinck JP, Bauwens JC, Homès G (1971) Int. J. Fract. Mech. 7: 277

    Google Scholar 

  129. Hertzberg RW, Manson JA (1973) J. Mater. Sci. 8: 1554

    CAS  Google Scholar 

  130. Skibo MD, Hertzberg RW, Manson JA (1976) J. Mater. Sci. 11: 479

    CAS  Google Scholar 

  131. Sauer JA, McMaster AD, Morrow DR (1976) J. Macromol. Sci., Phys. B 12: 535

    Google Scholar 

  132. Skibo MD, Hertzberg RW, Manson JA, Kim SL (1977) J. Mater. Sci. 12: 531

    CAS  Google Scholar 

  133. Mackay ME, Teng TG, Schultz JM (1979) J. Mater. Sci. 14: 221

    CAS  Google Scholar 

  134. Takemori MT, Kambour RP (1981) J. Mater. Sci. 16: 1108

    CAS  Google Scholar 

  135. Hertzberg RW, Skibo MD, Manson JA (1979) In: Fong JT (ed) Fatigue mechanisms, ASTM STP 675, ASTM, Philadelphia, p 471

    Google Scholar 

  136. de Charentenay FX, Laghouati F, Dewas J (1979) In: Deformation, yield and fracture of polymers, 4th Intern. Conf., Cambridge 1979. The Plastics and Rubber Institute, London, p 6.1

    Google Scholar 

  137. Könczöl L, Schinker MG, Döll W (1983) In: Fatigue in polymers, Intern. Conf., London 1983. The Plastics and Rubber Institute, London, p 4.1

    Google Scholar 

  138. idem (1984) J. Mater. Sci. 19: 1605

    Google Scholar 

  139. Schinker MG, Könczöl L, Döll W (1982) J. Mater. Sci. Letters 1: 475

    CAS  Google Scholar 

  140. McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. John Wiley, London

    Google Scholar 

  141. Schinker MG, Könczöl L, Döll W (1984): Colloid & Polym. Sci. 262: 230

    CAS  Google Scholar 

  142. Takahashi K (1981) J. Macromol. Sci., Phys. B 19: 695

    Google Scholar 

  143. Sternstein SS, Meyers FA (1973) J. Macromol. Sci., Phys. B 8: 539

    Google Scholar 

  144. Brown HR (1983) J. Polym. Sci., Polym. Phys. 21: 483

    CAS  Google Scholar 

  145. Kramer EJ (1984) Polym. Eng. Sci. 24: 761

    CAS  Google Scholar 

  146. Michler GH (1986) Colloid & Polym. Sci. 264: 522

    CAS  Google Scholar 

  147. Sneddon IN (1951) Fourier transforms. McGraw-Hill, New York

    Google Scholar 

  148. Bilby BA, Eshelby JD (1972) In: Liebowitz H (ed) Fracture, Academic, New York, vol 1 p 111

    Google Scholar 

  149. Bevan L (1983) Polym. Bulletin 10: 187

    Article  CAS  Google Scholar 

  150. Donald AM, Kramer EJ (1982) J. Appl. Polym. Sci. 27: 3729

    CAS  Google Scholar 

  151. Weitsman Y (1986) J. Appl. Mechanics 53: 97

    Article  Google Scholar 

  152. Bevan L (1984) In: Luxmoore AR, Owen DRJ (eds) Numerical methods in fracture mechanics. Pineridge, Swansea, p 337

    Google Scholar 

  153. Bevan L, Döll W, Könczöl L (1986) J. Polym. Sci., Polym. Phys. B 24: 2433

    CAS  Google Scholar 

  154. Marshall GP, Culver LE, Williams JG (1973) Int. J. Fracture 9: 295

    CAS  Google Scholar 

  155. Könczöl L, Schinker MG, Döll W (1985) In: Deformation, yield and fracture of polymers, 6th Intern. Conf. Cambridge 1985. The Plastics and Rubber Institute, London, p 31.1

    Google Scholar 

  156. Williams JG, Osorio AMBA (1980) In: François D et al (eds), Advances in fracture research. Pergamon, Oxford, p 435

    Google Scholar 

  157. Heymans N (1988) J. Mater. Sci. 23: 2394

    CAS  Google Scholar 

  158. Menges G, Boden H-E (1986) In: Brostow W, Corneliussen RD (eds) Failure of plastics. C. Hanser, München, p 169

    Google Scholar 

  159. Döll W (1974) Untersuchungen zum Bruchvorgang in verschieden molarem PMMA, Report W4/74. Institut für Festkörpermechanik (IFKM), Freiburg

    Google Scholar 

  160. Döll W (1984) Polym. Eng. Sci. 24: 798

    Google Scholar 

  161. Bevan L, Döll W, Könczöl L (1986) Polym. Bulletin 16: 545

    CAS  Google Scholar 

  162. Döll W, Könczöl L, Schinker MG (1986) In: Hartwig G, Evans D (eds) Nonmetallic materials and composites at low temperatures 3. Plenum, New York, p 43

    Google Scholar 

  163. Schirrer R (1987) J. Mater. Sci. 22: 2289

    CAS  Google Scholar 

  164. Schirrer R, Goett C (1980) Int. J. Fracture 16: R133

    Google Scholar 

  165. Könczöl L, Hiltner A, Baer E (1986) J. Appl. Phys. 60: 2651

    Google Scholar 

  166. Takemori MT (1984) Ann. Rev. Mater. Sci. 14: 171

    CAS  Google Scholar 

  167. Yang AC-M, Kramer EJ (1985) J. Polym. Sci., Polym. Phys. B 23: 1353

    CAS  Google Scholar 

  168. Berger LL, Buckley DJ, Kramer EJ, Brown HR, Bubeck RA (1987) J. Polym. Sci., Polym. Phys. B 25: 1679

    CAS  Google Scholar 

  169. Könczöl L, Schinker MG, Döll W (1983) In: Prep. IUPAC Macro '83, Sect. IV, 29th Int. Symposium on Macromolecules, Bucharest, p 331

    Google Scholar 

  170. Döll W, Könczöl L, Schinker MG (1985) Polym. Prepr. 26 (2): 134

    Google Scholar 

  171. Könczöl L, Sehanobish K (1987) J. Macromol. Sci.-Phys. B 26: 307

    Google Scholar 

  172. Döll W, Könczöl L (1986) In: Schwingfestigkeit von Kunststoffen, Vorträge 1. Sitzung des Arbeitskreises Polymerwerkstoffe. DVM Deutscher Verband für Materialprüfung e.V., Frankfurt, p 61

    Google Scholar 

  173. idem (1987) Industrie-Anzeiger 109 (97): 24

    Google Scholar 

  174. Könczöl L, Döll W, Bevan L (1988) In: Deformation, yield and fracture of polymers VII, Prepr. 7th Int. Conf., Cambridge 1988. The Plastics and Rubber Institute, London, p 17/1

    Google Scholar 

  175. idem (to be published in Colloid & Polym. Sci)

    Google Scholar 

  176. Rimnac CM, Hertzberg RW, Manson JA (1983), In: Fatigue in polymers, Int. Conf. London 1983. The Plastics and Rubber Institute, London, p 9.1

    Google Scholar 

  177. Rimnac CM, Hertzberg RW, Manson JA (1983) J. Mater. Sci. Let. 2: 325

    CAS  Google Scholar 

  178. Rimnac CM, Hertzberg RW, Manson JA (1984) J. Mater. Sci. 19: 1116

    CAS  Google Scholar 

  179. Lang RW, Manson JA, Hertzberg RW, Schirrer R (1984) Polym. Eng. Sci. 24: 833

    CAS  Google Scholar 

  180. Phillips JD, Hertzberg RW, Manson JA (1987) In: Ritchie RO, Starke EA Jr (eds) Fatigue '87, Proc. 3rd Int. Conf. on Fatigue and Fatigue Thresholds, Charlottesville, VA 1987, EMAS, Warley, vol. 3 p 1313

    Google Scholar 

  181. Chudnovsky A, Moet A (1982) Polym. Eng. Sci. 22: 922

    CAS  Google Scholar 

  182. Haddaoui N, Chudnovsky A, Moet A (1986) Polymer 27: 1377

    CAS  Google Scholar 

  183. Botsis J (1988) Polymer 29: 457

    CAS  Google Scholar 

  184. Imai Y, Ward IM (1985) J. Mater. Sci. 20: 3842

    CAS  Google Scholar 

  185. Paredes E, Fischer EW (1979) Makromol. Chem. 180: 2707

    CAS  Google Scholar 

  186. Mills PJ, Brown HR, Kramer EJ (1985) J. Mater. Sci. 20: 4413

    CAS  Google Scholar 

  187. Brown HR, Kramer EJ, Bubeck RA (1987) J. Polym. Sci., Polym. Phys. B 25: 1765

    CAS  Google Scholar 

  188. Brown HR (1987) Mater. Sci. Reports 2: 315

    CAS  Google Scholar 

  189. Döll W (1989) In: Roulin-Moloney A (ed) Fractography and failure mechanisms. Applied Science, London, p 387

    Google Scholar 

  190. Döll W (1987) In: Herrmann KP, Larson LH (eds) Fracture mechanics of non-metallic materials, proceeding 5th advanced seminar on fracture mechanics, Ispra 1985. D. Reidel, Dordrecht, p 257

    Google Scholar 

  191. Williams JG ibidem, ( p 227

    Google Scholar 

  192. Beer HR, Kaiser T, Moloney AC, Kausch HH (1986) J. Mater. Sci. 21: 3661

    CAS  Google Scholar 

  193. Döll W, Könczöl L (to be published)

    Google Scholar 

  194. LeGrand DG, Forth CM (1983) J. Polym. Sci., Polym. Letters Ed. 21: 853

    CAS  Google Scholar 

  195. Weichert R, Schönert K (1978) J. Mech. Phys. Solids 26: 151

    Google Scholar 

  196. Kambour RP (1966) J. Polym. Sci. A-2 4: 349

    CAS  Google Scholar 

  197. Arakawa K, Takahashi K (1987) In: Proc. Int. Conf. Photomechanics and Speckle Metrology, San Diego

    Google Scholar 

  198. Hartwig G, Pöhlmann K (1983) In: Clark A, Reed RP (eds) Advances in cryogenic engineering. New York, p 82

    Google Scholar 

  199. Pöhlmann K, Heneka A (1986) In: Hartwig G, Evans D (eds) Nonmetallic materials and composites at low temperatures 3. Plenum, New York, p 59

    Google Scholar 

  200. Williams JG (1984) Fracture mechanics of polymers. Ellis Horwood, Chichester

    Google Scholar 

  201. Williams G (1980) In: Structure and motion in polymer glasses, 10th EPS Conf. Noordwijkerhout 1980. Europhysics Conf. Abstr. vol 4A, EPS

    Google Scholar 

  202. Lethersich W (1950) Brit. Journ. Appl. Phys. 1: 294

    Google Scholar 

  203. Könczöl L, Schinker MG (unpublished results)

    Google Scholar 

  204. Miller P, Kramer EJ (1988) In: Deformation, yield and fracture of polymers VII, Prepr. 7th Int. Conf., Cambridge 1988. PRI London, p 81.1

    Google Scholar 

  205. Lang RW (1984) Applicability of linear elastic fracture mechanics to fatigue in polymers and short-fiber composites. PhD-Dissertation, Lehigh University, Bethlehem, PA

    Google Scholar 

  206. Paris PC, Erdogan FJ (1963) J. Bas. Eng., Trans. ASME (Ser. D) 85: 528

    CAS  Google Scholar 

  207. Brostow W, Corneliussen RD (eds) (1986) Failure of plastics. Carl Hanser, München

    Google Scholar 

  208. Kinloch AJ, Young RJ (1983) Fracture behavior of polymers. Applied Science, London

    Google Scholar 

  209. Kausch HH (ed) (1983) Crazing in polymers 1, Advances in Polym. Sci. 52/53, Springer, Berlin Heidelberg New York

    Google Scholar 

  210. Döll W, In: [206], p 105

    Google Scholar 

  211. Sauer JA, Chen CC, In: [206], p 169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -H. Kausch

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Döll, W., Könczöl, L. (1990). Micromechanics of fracture under static and fatigue loading: Optical interferometry of crack tip craze zones. In: Kausch, H.H. (eds) Crazing in Polymers Vol. 2. Advances in Polymer Science, vol 91/92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018021

Download citation

  • DOI: https://doi.org/10.1007/BFb0018021

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51306-3

  • Online ISBN: 978-3-540-46192-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics