Algebraic and geometric tools to compute projective and permutation invariants

  • Gabriella Csurka
  • Olivier Faugeras
Processing of the 3D Visual Space
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1315)


This paper studies the computation of projective invariants in pairs of images from uncalibrated cameras, and presents a detailed study of the projective and permutation invariants for configurations of points and/or lines. We give two basic computational approaches, one algebraic and one geometric, and also the relations between the invariants computed by different approaches. In each case, we show how to compute invariants in projective space assuming that the points and lines have already been reconstructed in an arbitrary projective basis, and also, how to compute them directly from image coordinates in a pair of views using only point and line correspondences and the fundamental matrix. Finally, we develop combinations of those projective invariants which are insensitive to permutations of the geometric primitives of each of the basic configurations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Carlsson. Multiple image invariants using the double algebra. In J. Mundy and ] A. Zissermann, editors, Proceeding of the Darpa Esprit workshop on Applications of Invariants in Computer Vision, Azores, Portugal, pages 335–350, October 1993.Google Scholar
  2. 2.
    G. Csurka. Modelisation projective des objets tridimensionnels en vision par ordinateur. Thèse de doctorat, Université de Nice-Sophia Antipolis, April 1996.Google Scholar
  3. 3.
    G. Csurka and O. Faugeras. Computing three-dimensional projective invariants from a pair of images using the Grassmann-Cayley algebra. Image and Vision Computing, 1997. to appear.Google Scholar
  4. 4.
    F. Devernay and O. Faugeras. From projective to euclidean reconstruction. In Proceedings of the Conference on Computer Vision and Pattern Recognition, San Francisco, California, USA, June 1996. to appear.Google Scholar
  5. 5.
    P. Gros. 3D projective invariants from two images. In Proceeding of the DARPAESPRIT workshop on Applications of Invariants in Computer Vision, Azores, Portugal, pages 65–85, October 1993.Google Scholar
  6. 6.
    R. Hartley. Invariants of lines in space. In Proceedings of Darpa Image Understanding Workshop, pages 737–744, 1993.Google Scholar
  7. 7.
    R. Horaud, F. Dornaika, and B. Espiau. Visually guided object grasping. IEEE Transactions on Robotics and Automation, 1997. submitted.Google Scholar
  8. 8.
    P. Meer, S. Ramakrishna, and R. Lenz. Correspondence of coplanar features through p2-invariant representations. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, pages A-196–202, 1994.Google Scholar
  9. 9.
    L. Morin. Quelques contributions des invariants projectifs à la vision par ordinateur. Thèse de doctorat, Institut National Polytechnique de Grenoble, January 1993.Google Scholar
  10. 10.
    J.G. Semple and G.T. Kneebone. Algebraic Projective Geometry. Oxford Science Publication, 1952.Google Scholar
  11. 11.
    C. Tisseron. Géométries affine, projective et euclidienne. HERMANN,Paris, 1988.Google Scholar
  12. 12.
    U. Uenohara and T. Kanade. Geometric invariants for verification in 3-d object tracking. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, volume II, pages 785–790, November 1996.Google Scholar
  13. 13.
    C. Zeller and O. Faugeras. Applications of non-metric vision to some visual guided tasks. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 1994.Google Scholar
  14. 14.
    A. Zisserman, P.A. Beardsley, and I.D. Reid. Metric calibration of a stereo rig. In Workshop on Representation of Visual Scenes, Cambridge, Massachusetts, USA, pages 93–100, June 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Gabriella Csurka
    • 1
  • Olivier Faugeras
    • 2
  1. 1.INRIA Rhône-AlpesMontbonnot Saint MartinFrance
  2. 2.INRIA Sophia-AntipolisSophia AntipolisFrance

Personalised recommendations