Advertisement

A new linear algorithm for Modular Decomposition

  • Alain Cournier
  • Michel Habib
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 787)

Abstract

We present here a new algorithm linear in time and space complexity for Modular Decomposition. This algorithm relies on structural properties of prime graphs (see theorems 7, and 8), on properties of modules (see property 1 and corollary 1) but also on the cograph recognition algorithm [CPS85]. Our algorithm builds and explores the decomposition tree of any undirected graph in a depth-first search way. As a by-product we show that a vertex-splitting operation is really a central tool for modular decomposition algorithms.

Keywords

Graphs autonomous subsets modules clans substitution graph decomposition trees prime graphs cographs vertex-splitting. cotrees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CH93a]
    A. Cournier and M. Habib. An efficient algorithm to recognize prime undirected graphs. In E. W. Mayr, editor, Lectures notes in Computer Science, 657.Graph-Theoretic Concepts in Computer Science. 18th International Workshop, WG'92. Wiesbaden-Naurod, Germany, June 1992. Proceding, pages 212–224. Springer-Verlag, 1993.Google Scholar
  2. [CH93b]
    A. Cournier and M. Habib. A new linear algorithm for modular decomposition. Raport de recherche, LIRMM, 161, Rue Ada, 34392 Montpellier Cedex 5, 1993.Google Scholar
  3. [CHM81]
    M. Chein, M. Habib, and M. C. Maurer. Partitive hypergraphs. Discrete Mathematics, (37):35–50, 1981.CrossRefGoogle Scholar
  4. [CJS72]
    D. D. Cowan, L. O. James, and R. G. Stanton. Graph decomposition for undirected graphs. In R. B. Levow eds. F. Hoffman, editor, 3rd S-E Conf. Combinatorics, Graph Theory and computing, Utilitas Math, pages 281–290, Winnipeg, 1972.Google Scholar
  5. [Cou93]
    A. Cournier. Sur Quelques Algorithmes de Décomposition de Graphes. PhD thesis, Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5, France, février 1993.Google Scholar
  6. [CPS85]
    D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM journal of computing, (14):926–934, november 1985.CrossRefGoogle Scholar
  7. [ER90a]
    A. Ehrenfeucht and G. Rozenberg. Primitivity is hereditary for 2-structures (fundamental study). Theoretical Comp. Sci., 3(70):343–358, 1990.CrossRefGoogle Scholar
  8. [ER90b]
    A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures, part i: clans, basic subclasses and morphisms (fundamental study). Theoretical Comp. Sci., 3(70):277–303, 1990.CrossRefGoogle Scholar
  9. [Gal67]
    T. Gallai. Transitiv orienterbare graphen. Acta Math. Acad. Sci. Hungar., (18):25–66, 1967. MR 36 #5026.CrossRefGoogle Scholar
  10. [Gol80]
    M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New-York, 1980.Google Scholar
  11. [Hab81]
    M. Habib. Substitution des structures combinatoires, théorie et algorithmes. PhD thesis, Université Pierre et Marie Curie (Paris VI), 1981.Google Scholar
  12. [HHS90]
    M. Habib, M. Huchard, and J. Spinrad. A linear algorithm to decompose inheritance graphs into modules. Rapport de Recherche CRIM-81, to appear in Algorithmica, 1990.Google Scholar
  13. [HM79]
    M. Habib and M. C. Maurer. On the x-join decomposition for undirected graphs. Discrete Applied Math, (3):198–207, 1979.Google Scholar
  14. [Ill90]
    P. Ille. Indecomposable relations. preprint Université de Marseille, 1990.Google Scholar
  15. [Ill91]
    P. Ille. L'ensemble des intervalles d'une multirelation binaire et réflexive. Zeitschr. f. math. Logik und Grundlagen d. Math. Bd., (37):227–256, 1991.Google Scholar
  16. [Kel85]
    D. Kelly. Comparability graphs. In I. Rival, editor, Graphs and Orders, pages 3–40. D. Reidel Publishing Company, 1985.Google Scholar
  17. [MC78]
    M.C. Vilarem M. Chein, M. Habib. Hypergraphes homogènes et ensembles de parties homogènes d'un graphe ou d'un hypergraphe. C.R. Acad Sciences Paris, (287):285–287, 1978.Google Scholar
  18. [McC92]
    R. M. McConnell. A practical o(n 2) algorithm for substitution decomposition. Dept. of computer science, University of colorado at Boulder, Boulder, CO 80309 USA, 1992.Google Scholar
  19. [MCGW93]
    C.L. McCreary, C.L. Combs, D.H. Gill, and J.V. Warren. An automated graph drawing system using graph decomposition. In Graph Drawing'93, 1993.Google Scholar
  20. [Möh85]
    R. H. Möhring. Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions. Annals of Operations Research, 6:195–225, 1985.CrossRefGoogle Scholar
  21. [Möh89]
    R. H. Möhring. Computationaly tractable classes of ordered sets. In I. Rival, editor, Algorithms and Orders, pages 105–193. Kluwer Academic Publishers, 1989. volume: 255, series C: Mathematical and Physical Sciences.Google Scholar
  22. [MR84]
    R. H. Möhring and F. J. Radermacher. Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discrete math, (19):257–356, 1984.Google Scholar
  23. [MS89]
    J. H. Muller and J. Spinrad. Incremental modular decomposition. Journal of the association for Computing Machinery, (1):1–19, January 1989.CrossRefGoogle Scholar
  24. [MS93]
    R. M. McConnell and J. Spinrad. Linear-time modular decomposition and efficient transitive orientation of undirected graphs. Dept. of computer science, University of colorado at Boulder, Boulder, CO 80309 USA, 1993.Google Scholar
  25. [Sab59]
    J. Sabidussi. The composition of graphs. Duke Math.Journal, (26):693–696, 1959.CrossRefGoogle Scholar
  26. [Sha68]
    L. S. Shapley. In F. Zwycky and A. Wilson, editors, New Methods of Thought and Procedure, number 26, pages 693–696. New-York, 1968.Google Scholar
  27. [Spi85]
    J. Spinrad. On comparability and permutation graphs. SIAM J. COMPUT., 14(3):658–670, August 1985.CrossRefMathSciNetGoogle Scholar
  28. [Spi92]
    J. Spinrad. P4-trees and substitution decomposition. Discrete Applied Mathematics, (39):263–291, 1992.CrossRefGoogle Scholar
  29. [ST91]
    J. H. Schmerl and W. T. Trotter. Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. preprint, 1991.Google Scholar
  30. [Sum71]
    D. P. Sumner. Indecomposable graphs. PhD thesis, University of Massachussets, Amherts, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Alain Cournier
    • 1
  • Michel Habib
    • 1
  1. 1.LIRMMMontpellier cedex 5France

Personalised recommendations