Movement of objects in configuration spaces modelled by graph grammars

  • Gabriele Taentzer
  • Holger Schween
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)


Configuration spaces are considered where arbitrary objects are placed in a two-dimensional discretized space and can move via translations and rotations within this space. If there is a motion of an object or even if several objects move in parallel the recognition of collisions between all objects is essential. To tackle these problems such configuration spaces are modelled by graphs and motions of objects in the configuration space by graph transformations. For modelling basic motions two-level graph transformations are used to create first object productions from a finite set of elementary productions which are then applied to configurations. These graph transformations model collision-free motions if the consistency of the configuration space is preserved.


configuration two-level graph transformation parallel graph transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ArMa75]
    M.A. Arbib, E.G. Manes Arrows, Structures and Functors Academic Press, New York-San Francisco-London,1975Google Scholar
  2. [BEHL87]
    P. Boehm, H. Ehrig, U. Hummert, M. Loewe Towards distributed graph-grammars Proc. 3rd Int. Workshop on Graph Grammars, Springer LNCS 291(1987),p.86–98Google Scholar
  3. [Eh79]
    Hartmut Ehrig Introduction to the Algebraic Theory of Graph Grammars LNCS 73, Springer Verlag, Berlin, 1979Google Scholar
  4. [EHLP91]
    H. Ehrig, A. Habel, M. Loewe, F. Parisi-Presicce From Graph Grammars to High-Level Replacement Systems This volumeGoogle Scholar
  5. [EhRo80]
    Hartmut Ehrig,Barry K. Rosen Parallelism and Concurrency of Graph Manipulations North-Holland Publishing Company, 1980Google Scholar
  6. [PEM87]
    F. Parisi-Presicce, H. Ehrig, U. Montanari Graph Rewriting with Unification and Composition Proc. 3rd Int. Workshop on Graph Grammars, Springer LNCS 291(1987),p.496–511Google Scholar
  7. [ST90]
    Holger Schween, Gabriele Taentzer Anwendungen und Erweiterungen der Theorie von Graphgrammatiken auf Bewegungsprobleme in der Robotik Diplomarbeit, TU Berlin, 1990Google Scholar
  8. [Wi81]
    A. Wilharm Anwendung der Theorie von Graphgrammatiken auf die Spezifikation der Prozessteuerung von Eisenbahnsystemen Comp. Sci. Report 81-15,TU Berlin,1981Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Gabriele Taentzer
    • 1
  • Holger Schween
    • 1
  1. 1.Computer Science DepartmentTechnical University of BerlinBerlin 10

Personalised recommendations