Tree automata, tree decomposition and hyperedge replacement

  • Clemens Lautemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)


Recent results concerning efficient solvability of graph problems on graphs with bounded tree-width and decidability of graph properties for hyperedge-replacement graph grammars are systematised by showing how they can be derived from recognisability of corresponding tree classes by finite tree automata, using only well-known techniques from tree-automata theory.


graph grammar tree automaton graph algorithm computational complexity tree-width 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ar 85]
    S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability — a survey. BIT 25 (1985), pp. 2–23.CrossRefGoogle Scholar
  2. [ACP 87]
    S. Arnborg, D. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree. SIAM J.Alg.Disc.Meth. 8 (1987), pp.277–284.Google Scholar
  3. [ALS 88]
    S.Arnborg, J.Lagergren, D.Seese, Which problems are easy for tree-decomposable graphs? LNCS 317, pp. 38–51.Google Scholar
  4. [BC 87]
    M. Bauderon, B. Courcelle, A Graph Expressions and graph rewriting. Math. Systems Theory 20 (1987), pp. 83–127.CrossRefGoogle Scholar
  5. [Bo 86]
    H.L.Bodlaender, Classes of graphs with bounded tree-width. Report RUU-CS-86-22, Rijksuniversiteit Utrecht, vakgroep informatica, 1986.Google Scholar
  6. [Bo 88a]
    H.L.Bodlaender, Dynamic programming on graphs with bounded tree-width. LNCS 317, pp. 105–118.Google Scholar
  7. [Bo 88b]
    H.Bodlaender, NC-algorithms for graphs with small treewidth. Report RUU-CS-88-4, Rijsuniversiteit Utrecht, vakgroep informatica, 1988.Google Scholar
  8. [Bo 88c]
    H.L.Bodlaender, Planar graphs with bounded tree-width. Report RUU-CS-88-14, Rijksuniversiteit Utrecht, vakgroep informatica, 1988.Google Scholar
  9. [Co 81]
    S.A. Cook, Towards a complexity theory of synchronous parallel computation. L'Enseignement mathématique 27 (1981), pp. 99–124.Google Scholar
  10. [Co 87]
    B. Courcelle, An axiomatic definition of context-free rewriting and its application to NLC graph grammars. TCS 55 (1987), pp. 141–181.CrossRefGoogle Scholar
  11. [Co 88]
    B.Courcelle, The monadic second-order logic of graphs, III: Tree-width, forbidden minors, and complexity issues. Preprint, Université Bordeaux 1, 1988.Google Scholar
  12. [Co 90]
    B. Courcelle, The monadic second-order logic of graphs, I: Recognizable sets of finite graphs. I&C 85 (1990), pp. 12–75.Google Scholar
  13. [Do 70]
    J.E. Doner, Tree acceptors and some of their applications. JCSS 4 (1970), pp. 406–451.Google Scholar
  14. [GS 84]
    F. Gécseg, M. Steinby, Tree automata. Akadémiai Kiadó, Budapest 1984.Google Scholar
  15. [Ha 89]
    A. Habel, Hyperedge replacement: Grammars and languages. Dissertation, Bremen 1989.Google Scholar
  16. [HK 87]
    A. Habel, H.-J. Kreowski, Some structural aspects of hypergraph languages generated by hyperedge replacement. LNCS 247 (1987), pp. 207–219.Google Scholar
  17. [HKL 89]
    A.Habel, H.-J.Kreowski, C.Lautemann, A comparison of compatible, finite, and inductive graph properties. Report No. 7/89, Fachbereich Mathematik/Informatik, Universität Bremen, 1989, to appear in TCS.Google Scholar
  18. [HKV 87]
    A. Habel, H.-J. Kreowski, W. Vogler, Metatheorems for decision problems on hyperedge-replacement graph languages. Acta Informatica 26 (1989), pp. 657–677.CrossRefGoogle Scholar
  19. [HKV 89]
    A.Habel, H.-J.Kreowski, W.Vogler, Decidable boundedness problems for sets of graphs generated by hyeredge replacement. To appear in TCS.Google Scholar
  20. [HU 79]
    J.E.Hopcroft, J.D.Ullman, Introduction to automata theory, languages, and computation. Addison-Wesley, 1979.Google Scholar
  21. [Jo 85]
    D.S. Johnson, The NP-completeness column: An ongoing guide. J. Algorithms 6 (1985), pp. 434–451.CrossRefGoogle Scholar
  22. [La 88a]
    C. Lautemann, Decomposition trees: structured graph representation and efficient algorithms. LNCS 299 (1988), pp. 28–39.Google Scholar
  23. [La 88b]
    C. Lautemann, Efficient algorithms on context-free graph languages. LNCS 317 (1988), pp. 362–378.Google Scholar
  24. [La 90a]
    C. Lautemann, The complexity of graph languages generated by hyperedge replacement. Acta Informatica 27, 399–421 (1990)CrossRefGoogle Scholar
  25. [La 90b]
    C.Lautemann, Tree decomposition of graphs and tree automata. Informatik-Bericht 2/90, Johannes-Gutenberg Universität Mainz, 1990.Google Scholar
  26. [LW 88]
    T.Lengauer, E.Wanke, Efficient analysis of graph properties on context-free graph languages (Extended abstract). LNCS 317, pp. 379–393. Revised version as Report 45 (1989), Fachbereich Mathematik-Informatik, Universität-Gesamthochschule Paderborn.Google Scholar
  27. [LWV 84]
    J.Y.-T. Leung, J. Witthof, O. Vornberger, On some variations of the bandwidth minimization problem. SIAM J. Comp. 13 (1984), pp. 650–667.CrossRefGoogle Scholar
  28. [RS 86a]
    N. Robertson, P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7 (1986), pp. 309–322.CrossRefGoogle Scholar
  29. [RS 86b]
    N.Robertson, P.D.Seymour, Graph minors. XIII. The disjoint paths problem. Preprint 1986.Google Scholar
  30. [Ru 80]
    W.L. Ruzzo, Tree-size bounded alternation. JCSS 20 (1980), pp. 218–235.Google Scholar
  31. [Th 73]
    J.W.Thatcher, Tree automata: an informal survey. In: “Currents in the theory of computing” (ed. A.V.Aho), Prentice-Hall 1973, pp.143–172.Google Scholar
  32. [TW 65]
    J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theory 2 (1968), pp. 57–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Clemens Lautemann
    • 1
  1. 1.Fachbereich Mathematik und InformatikJohannes Gutenberg UniversitätMainz

Personalised recommendations