Advertisement

Physically-based graphical interpretation of marker cellwork L-systems

  • F. David Fracchia
  • Przemyslaw Prusinkiewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)

Abstract

Map L-systems with dynamic interpretation have been successfully applied to the modeling of the development of two-dimensional cell layers [3, 4]. We extend this technique to three-dimensional cellular structures. The seminal notion of three-dimensional cyclic edge-label-controlled OL-systems, termed cellworks, was introduced by A. Lindenmayer [8]. We provide an alternative definition of cellworks using markers, and use it as a formal basis for a simulation program. Cell geometry is viewed as the result of mechanical cell interactions due to osmotic pressure and wall tension. Developmental sequences can be animated by considering periods of continuous expansion delimited by instantaneous cell divisions. As an example, the method is applied to visualize the development of a three-dimensional epidermal cell layer.

Keywords

computer graphics mathematical modeling in biology simulation visualization of development map L-system cellwork L-system dynamic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. J. M. de Boer. Analysis and computer generation of division patterns in cell layers using developmental algorithms. PhD thesis, University of Utrecht, the Netherlands, 1989.Google Scholar
  2. [2]
    L. Fox and D. F. Mayers. Numerical solution of ordinary differential equations. Chapman and Hall, London, 1987.Google Scholar
  3. [3]
    F. D. Fracchia, P. Prusinkiewicz, and M. J. M. de Boer. Animation of the development of multicellular structures. In N. Magnenat-Thalmann and D. Thalmann, editors, Computer Animation '90, pages 3–18, Tokyo, 1990. Springer-Verlag.Google Scholar
  4. [4]
    F. D. Fracchia, P. Prusinkiewicz, and M. J. M. de Boer. Visualization of the development of multicellular structures. In Proceedings of Graphics Interface '90, pages 267–277, 1990.Google Scholar
  5. [5]
    B. E. S. Gunning. Microtubules and cytomorphogenesis in a developing organ: The root primordium of Azolla pinnata. In O. Kiermayer, editor, Cytomorphogenesis in plants, Cell Biology Monographs 8, pages 301–325. Springer-Verlag, Wien, 1981.Google Scholar
  6. [6]
    R. W. Korn. Positional specificity within plant cells. J. Theoretical Biology, 95:543–568, 1982.CrossRefGoogle Scholar
  7. [7]
    A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.CrossRefPubMedGoogle Scholar
  8. [8]
    A. Lindenmayer. Models for plant tissue development with cell division orientation regulated by preprophase bands of microtubules. Differentiation, 26:1–10, 1984.Google Scholar
  9. [9]
    A. Lindenmayer. An introduction to parallel map generating systems. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph-grammars and their application to computer science, pages 27–40. Springer-Verlag, 1987. Lecture Notes in Comp. Sci. 291.Google Scholar
  10. [10]
    A. Lindenmayer and G. Rozenberg. Parallel generation of maps: developmental systems for cell layers. In V. Claus, H. Ehrig, and G. Rozenberg, editors, Graph-grammars and their application to computer science and biology, pages 301–316. Springer-Verlag, Berlin, 1979. Lecture Notes in Comp. Sci. 73.Google Scholar
  11. [11]
    H. B. Lück and J. Lück. Vers une metrie des graphes evolutifs, representatifs d'ensembles cellulaires. In H. Le Guyader and T. Moulin, editors, Actes du premier seminaire de l'Ecole de Biologie Théorique du CNRS, pages 373–398. Ecole Nat. Sup. de Techn. Avanc., Paris, 1981.Google Scholar
  12. [12]
    J. Lück and H. B. Lück. 3-dimensional plant bodies by double wall map and stereomap systems. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-grammars and their application to computer science, pages 219–231. Springer-Verlag, 1983. Lecture Notes in Comp. Sci. 153.Google Scholar
  13. [13]
    J. Lück and H. B. Lück. Double-wall cellwork systems for plant meristems. In this volume, 1990.Google Scholar
  14. [14]
    A. Nakamura, A. Lindenmayer, and K. Aizawa. Some systems for map generation. In G. Rozenberg and A. Salomaa, editors, The Book of L, pages 323–332. Springer-Verlag, Berlin, 1986.Google Scholar
  15. [15]
    P. Prusinkiewicz and J. S. Hanan. Lindenmayer systems, fractals, and plants. Springer-Verlag, New York, 1989. Lecture Notes in Biomathematics 79.Google Scholar
  16. [16]
    W. Sierpiński. Sur une courbe dont tout point est un point de ramification. Comptes Rendus hebdomadaires des séances de l'Académie des Sciences, 160:302–305, 1915. Reprinted in W. Sierpiński, Oeuvres choisies, S. Hartman et al., editors, pages 99–106, PWN — Éditions Scientifiques de Pologne, Warsaw, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • F. David Fracchia
    • 1
  • Przemyslaw Prusinkiewicz
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations