A characterization of context-free NCE graph languages by monadic second-order logic on trees

  • Joost Engelfriet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)


A graph language L is in the class C-edNCE of context-free NCE graph languages if and only if L=f(T) where f is a function on graphs that can be defined in monadic second-order logic and T is the set of all trees over some ranked alphabet. This logical characterization implies a large number of closure and decidability properties of the class C-edNCE.


context-free graph grammar monadic second-order logic tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ArnLagSee88]
    S. Arnborg, J. Lagergren, D. Seese; Problems easy for tree-decomposable graphs, Proc. ICALP '88, Lecture Notes in Computer Science 317, Springer-Verlag, Berlin, 1988, 38–51Google Scholar
  2. [BauCou87]
    M. Bauderon, B. Courcelle; Graph expressions and graph rewritings, Math. Systems Theory 20 (1987), 83–127CrossRefGoogle Scholar
  3. [Bra88]
    F.J. Brandenburg; On polynomial time graph grammars, Proc. STACS 88, Lecture Notes in Computer Science 294, Springer-Verlag, Berlin, 227–236Google Scholar
  4. [Büc60]
    J.R. Büchi; Weak second-order arithmetic and finite automata, Zeitschr. f. Math. Logik und Grundlagen d. Math. 6 (1960), 66–92Google Scholar
  5. [CorLerSte81]
    D.G. Corneil, H. Lerchs, L.Stewart Burlingham; Complement reducible graphs, Discr. Appl. Math. 3 (1981), 163–174CrossRefGoogle Scholar
  6. [Cou87]
    B. Courcelle; An axiomatic definition of context-free rewriting and its application to NLC graph grammars, Theor. Comput. Sci. 55 (1987), 141–181CrossRefGoogle Scholar
  7. [Cou89]
    B.Courcelle; The monadic second-order logic of graphs. V: On closing the gap between definability and recognizability, Report 89–91, LaBRI, University of Bordeaux, 1989, to appear in TCSGoogle Scholar
  8. [Cou90a]
    B. Courcelle; The monadic second-order logic of graphs. I: Recognizable sets of finite graphs, Inform. Comput. 85 (1990), 12–75. See also [EhrNagRozRos87], 112–133CrossRefGoogle Scholar
  9. [Cou90b]
    B.Courcelle; The monadic second-order logic of graphs. VII: Graphs as relational structures, Manuscript, University of Bordeaux, 1990Google Scholar
  10. [Cou91]
    B.Courcelle; Graphs as relational structures: an algebraic and logical approach, this VolumeGoogle Scholar
  11. [CouEngRoz91]
    B.Courcelle, J.Engelfriet, G.Rozenberg; Context-free handle-rewriting hypergraph grammars, this VolumeGoogle Scholar
  12. [Don70]
    J. Doner; Tree acceptors and some of their applications, J. Comput. System Sci. 4 (1970), 406–451Google Scholar
  13. [EhrNagRozRos87]
    H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld (eds.); Graph-Grammars and their Application to Computer Science, Lecture Notes in Computer Science 291, Springer-Verlag, Berlin, 1987Google Scholar
  14. [Elg61]
    C.C. Elgot; Decision problems of finite automata and related arithmetics, Trans. Amer. Math. Soc. 98 (1961), 21–51Google Scholar
  15. [Eng88]
    J.Engelfriet; Monadic second-order logic for graphs, trees, and strings, Copies of transparencies, November 1988Google Scholar
  16. [Eng89a]
    J. Engelfriet; Context-free NCE graph grammars, Proc. FCT '89, Lecture Notes in Computer Science 380, Springer-Verlag, Berlin, 1989, 148–161Google Scholar
  17. [Eng89b]
    J.Engelfriet; A regular characterization of graph languages definable in monadic second-order logic, Report 89-03, Leiden University, 1989, to appear in TCSGoogle Scholar
  18. [EngLei89]
    J. Engelfriet, G. Leih; Linear graph grammars: power and complexity, Inform. Comput. 81 (1989), 88–121CrossRefGoogle Scholar
  19. [EngLeiRoz87]
    J.Engelfriet, G.Leih, G.Rozenberg; Apex graph grammars, in [EhrNagRozRos87], 167–185Google Scholar
  20. [EngLeiWel90]
    J. Engelfriet, G. Leih, E. Welzl; Boundary graph grammars with dynamic edge relabeling, J. Comput. System Sci. 40 (1990), 307–345CrossRefGoogle Scholar
  21. [EngRoz90]
    J. Engelfriet, G. Rozenberg; A comparison of boundary graph grammars and context-free hypergraph grammars, Inform. Comput. 84 (1990), 163–206CrossRefGoogle Scholar
  22. [GecSte84]
    F. Gécseg, M. Steinby; "Tree automata", Akadémiai Kiadó, Budapest, 1984Google Scholar
  23. [HabKre87]
    A. Habel, H.-J. Krewoski; May we introduce to you: hyperedge replacement, in 15–26Google Scholar
  24. [HabKreVog89a]
    A. Habel, H.-J. Kreowski, W. Vogler; Decidable boundedness problems for hyperedge-replacement graph grammars, in Proc. TAPSOFT '89, Lecture Notes in Computer Science 351, Springer-Verlag, Berlin, 1989, 275–289Google Scholar
  25. [HabKreVog89b]
    A. Habel, H.-J. Kreowski, W. Vogler; Metatheorems for decision problems on hyperedge replacement graph languages, Acta Informatica 26 (1989), 657–677CrossRefGoogle Scholar
  26. [Kau85]
    M.Kaul; Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken, Ph.D.Thesis, Osnabrück, 1985Google Scholar
  27. [LenWan88]
    T. Lengauer, E. Wanke; Efficient analysis of graph properties on context-free graph languages, Proc. ICALP '88, Lecture Notes in Computer Science 317, Springer-Verlag, Berlin, 1988, 379–393Google Scholar
  28. [Nag79]
    M. Nagl; "Graph-grammatiken", Vieweg, Braunschweig, 1979.Google Scholar
  29. [Oos89]
    V.van Oostrom; Graph grammars and 2nd order logic (in Dutch), M. Sc. Thesis, 1989Google Scholar
  30. [Roz87]
    G.Rozenberg; An introduction to the NLC way of rewriting graphs, in [EhrNagRozRos87], 55–66Google Scholar
  31. [RozWel86]
    G. Rozenberg, E. Welzl; Boundary NLC graph grammars — basic definitions, normal forms, and complexity, Inform. Contr. 69 (1986), 136–167CrossRefGoogle Scholar
  32. [RozWel87]
    G. Rozenberg, E. Welzl; Combinatorial properties of boundary NLC graph languages, Discr. Appl. Math. 16 (1987), 59–73CrossRefGoogle Scholar
  33. [Sch87]
    R.Schuster; Graphgrammatiken und Grapheinbettungen: Algorithmen und Komplexität, Ph.D.Thesis, Report MIP-8711, Passau, 1987Google Scholar
  34. [ThaWri68]
    J.W. Thatcher, J.B. Wright; Generalized finite automata theory with an application to a decision problem of second-order logic, Math. Syst. Theory 2 (1968), 57–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Joost Engelfriet
    • 1
  1. 1.Dept. of Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations