Advertisement

From graph grammars to high level replacement systems

  • Hartmut Ehrig
  • Annegret Habel
  • Hans-Jörg Kreowski
  • Francesco Parisi-Presicce
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)

Abstract

The algebraic approach to graph grammars — well-known in the literature for several types of graphs and structures — is extended to include several new types of replacement systems, especially the replacement of algebraic specifications which were recently introduced for a rule-based approach to modular system design.

This leads to the new concept of high level replacement systems which is formulated in an axiomatic algebraic framework based on categories and double-pushouts. In this paper only basic notions like productions, derivations, parallel and sequential independence are introduced for high-level replacement systems leading to Church-Rosser and Parallelism Theorems previously shown in the literature for special cases only.

Keywords

graph grammars high level replacement systems category theory independent derivations Church-Rosser Theorem parallelism theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [AM 75]
    Arbib, M.A.; Manes, E.G.: Arrows, Structures and Functors, Academic Press, New York-San Francisco-London, 1975Google Scholar
  2. [CMREL 90]
    Corradini, U. Montanari, F. Rossi, H. Ehrig, M. Löwe: Graph Grammars and Logic Programming, in [EKR 91]Google Scholar
  3. [Ehr 79]
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars, LNCS 73 (1979), p. 1–69Google Scholar
  4. [EHR 86]
    Ehrig, H.; Habel, A.; Rosen, B.K.: Concurrent Transformations of Relational Structures, Fundamenta Informaticae IX (1986), 13–50Google Scholar
  5. [EHKP 90]
    Ehrig, H.; Habel, A.; Kreowski, H.-J.; Parisi-Presicce, F.: Parallelism and Concurrency in High Level Replacement Systems, Techn. Report, TU Berlin, FB 20, No. 90/35Google Scholar
  6. [EK 75]
    Ehrig, H.; Kreowski, H.-J.: Categorical Theory of Graph Grammars, Techn. Report TU Berlin, FB 20, Bericht Nr. 75-08 (1975)Google Scholar
  7. [EKR 91]
    Ehrig, H.; Kreowski, H.-J.; Rozenberg, G.: Graph Grammars and Their Applications to Computer Science, to appear in LNCS 1991Google Scholar
  8. [EKMRW 81]
    Ehrig, H.; Kreowski, H.-J.; Maggiolo-Schettini, A.; Rosen, B.; Winkowski, J.: Transformation of Structures: An Algebraic Approach, Math. Syst. Theory 14 (1981), p. 305–334CrossRefGoogle Scholar
  9. [EM 85]
    Ehrig, H.; Mahr, B.: Fundamentals of Algebraic Specification 1. Equations and Initial Semantics. EATCS Monographs on Theoretical Computer Science, Vol. 6, Springer (1985)Google Scholar
  10. [ER 80]
    Ehrig, H.; Rosen, B.K.: Parallelism and Concurrency of Graph Manipulations. Theor. Comp. Sci. 11 (1980), 247–275CrossRefGoogle Scholar
  11. [EPS 73]
    Ehrig, H.; Pfender, M.; Schneider, H.J.: Graph Grammars: An Algebraic Approach, Proc. IEEE Conf. SWAT'73, Iowa City (1973), p. 167–180Google Scholar
  12. [Ha 89]
    Habel, A.: Hyperedge Replacement: Grammars and Languages; Ph.D. Thesis, Univ. Bremen, 1989Google Scholar
  13. [Hu 89]
    Hummert, U.: Algebraische Theorie von High-Level-Netzen, Ph.D.Thesis, TU Berlin, 1989Google Scholar
  14. [HS 73]
    Herrlich, H.; Stecker, G.E.: Category Theory. Allyn and Bacon, Boston 1973Google Scholar
  15. [Kr 77]
    Kreowski, H.-J.: Manipulation von Graphmanipulationen, Ph.D. Thesis, TU Berlin, 1977Google Scholar
  16. [ML 72]
    MacLane, S.: Categories for the working mathematician. Springer New York-Heidelberg-Berlin 1972Google Scholar
  17. [MM 88]
    Meseguer, P.; Montanari, U.;: Petri Nets are Monoids: A New Algebraic Foundation for Neth Theory; Proc. Logics in Comp. Sci., 1988Google Scholar
  18. [PE 90]
    Parisi-Presicce, F.; Ehrig, H.: Algebraic Specification Grammars, in [EKR 91]Google Scholar
  19. [PEM 87]
    Parisi-Presicce, F.; Ehrig, H.; Montanari, U.; Graph Rewriting with Unification and Composition, Proc. 3rd Int. Workshop on Graph Grammars, Springer LNCS 291 (1987), p. 496–511Google Scholar
  20. [PP 89]
    Parisi-Presicce, F.: Modular System Design Applying Graph Grammar Techniques, Proc. 16th ICALP, Springer LNCS 372 (1989), p. 621–636Google Scholar
  21. [PP 90]
    Parisi-Presicce, F.: A Rule Based Approach to Modular System Design, Proc. 12th Inf. Conf. Software Engineering, March 1990Google Scholar
  22. [SE 76]
    Schneider, H. J.; Ehrig, H.: Grammars on Partial Graphs, Acta Informatica 6 (1976), p. 297–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Hartmut Ehrig
    • 1
  • Annegret Habel
    • 2
  • Hans-Jörg Kreowski
    • 2
  • Francesco Parisi-Presicce
    • 3
  1. 1.Technical University BerlinBerlin 10Germany
  2. 2.University of BremenBremen 33Germany
  3. 3.Università degli Studi AquilaL'AquilaItalia

Personalised recommendations