Context-free handle-rewriting hypergraph grammars

  • Bruno Courcelle
  • Joost Engelfriet
  • Grzegorz Rozenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)


Separated handle-rewriting hypergraph grammars (S-HH grammars) are introduced, where separated means that the nonterminal handles are disjoint. S-HH grammars have the same graph generating power as the vertex rewriting context-free NCE graph grammars, and as recursive systems of equations with four types of simple operations on graphs.


graph grammar hypergraph recursive system of equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BauCou]
    M. Bauderon, B. Courcelle; Graph expressions and graph rewritings, Math. Systems Theory 20 (1987), 83–127CrossRefGoogle Scholar
  2. [Bra]
    F.J.Brandenburg; On polynomial time graph grammars, Proc. STACS 88, LNCS 294, 227–236Google Scholar
  3. [Cou86]
    B. Courcelle; Equivalences and transformations of regular systems — applications to recursive program schemes and grammars, Theor. Comput. Sci. 42 (1986), 1–122CrossRefGoogle Scholar
  4. [Cou87]
    B. Courcelle; An axiomatic definition of context-free rewriting and its application to NLC graph grammars, Theor. Comput. Sci. 55 (1987), 141–181CrossRefGoogle Scholar
  5. [Cou88a]
    B.Courcelle; The monadic second-order logic of graphs. III: Tree-width, forbidden minors and complexity issues, Report I-8852, BordeauxGoogle Scholar
  6. [Cou88b]
    B. Courcelle; Some applications of logic, of universal algebra and of category theory to the theory of graph transformations, Bulletin of the EATCS 36 (1988), 161–218Google Scholar
  7. [Cou89]
    B. Courcelle; The monadic second-order logic of graphs: Definable sets of finite graphs, LNCS 344 (1989), 30–53Google Scholar
  8. [Cou90]
    B. Courcelle; The monadic second-order logic of graphs. I: Recognizable sets of finite graphs, Inform. Comput. 85 (1990), 12–75. See also [EhrNagRozRos], 112–133CrossRefGoogle Scholar
  9. [CouEngRoz]
    B.Courcelle, J.Engelfriet, G.Rozenberg; Handle-rewriting hypergraph grammars, parts I and II, Reports 90-08 and 90-09, Leiden, or Report 90-84, BordeauxGoogle Scholar
  10. [EhrNagRozRos]
    H.Ehrig, M.Nagl, G.Rozenberg, A.Rosenfeld (eds.); Graph-Grammars and their Application to Computer Science, LNCS 291, 1987Google Scholar
  11. [EhrRoz]
    H. Ehrig, G. Rozenberg: Some definitional suggestions for parallel graph grammars, in "Automata, Languages, and Development" (A. Lindenmayer, G. Rozenberg, eds.), North-Holland Pub. Co., Amsterdam, 1976, 443–468Google Scholar
  12. [Eng89]
    J.Engelfriet; Context-free NCE graph grammars, Proc. FCT '89, LNCS 380, 148–161Google Scholar
  13. [Eng91]
    J.Engelfriet; A characterization of context-free NCE graph languages by monadic second-order logic on trees, this VolumeGoogle Scholar
  14. [EngHey89]
    J.Engelfriet, L.M.Heyker; The string generating power of context-free hypergraph grammars, Report 89-05, Leiden, to appear in JCSSGoogle Scholar
  15. [EngHey91a]
    J.Engelfriet, L.M.Heyker; The term generating power of context-free hypergraph grammars, this VolumeGoogle Scholar
  16. [EngHey91b]
    J.Engelfriet, L.M.Heyker; Hypergraph languages of bounded degree, 1991, in preparationGoogle Scholar
  17. [EngLei]
    J. Engelfriet, G. Leih; Linear graph grammars: power and complexity, Inform. Comput. 81 (1989), 88–121CrossRefGoogle Scholar
  18. [EngLeiRoz87]
    J.Engelfriet, G.Leih, G.Rozenberg; Apex graph grammars, in [EhrNagRozRos], 167–185Google Scholar
  19. [EngLeiRoz88]
    J.Engelfriet, G.Leih, G.Rozenberg; Nonterminal separation in graph grammars, Report 88-29, Leiden, to appear in TCSGoogle Scholar
  20. [EngLeiWel]
    J. Engelfriet, G. Leih, E. Welzl; Boundary graph grammars with dynamic edge relabeling, JCSS 40 (1990), 307–345Google Scholar
  21. [EngRoz]
    J. Engelfriet, G. Rozenberg; A comparison of boundary graph grammars and context-free hypergraph grammars, Inform. Comput. 84 (1990), 163–206CrossRefGoogle Scholar
  22. [Hab]
    A.Habel; Hyperedge replacement: grammars and languages, Ph.D.Thesis, Bremen, 1989Google Scholar
  23. [HabKre87a]
    A.Habel, H.-J.Kreowski; Some structural aspects of hypergraph languages generated by hyperedge replacement, Proc. STACS '87, LNCS 247, 207–219Google Scholar
  24. [HabKre87b]
    A.Habel, H.-J.Krewoski; May we introduce to you: hyperedge replacement, in [EhrNagRozRos], 15–26Google Scholar
  25. [JanRoz80]
    D. Janssens, G. Rozenberg; On the structure of node-label-controlled graph languages, Inform. Sci. 20 (1980), 191–216CrossRefGoogle Scholar
  26. [JanRoz83]
    D.Janssens, G.Rozenberg; A survey of NLC grammars, Proc. CAAP '83, LNCS 159, 114–128Google Scholar
  27. [Kau]
    M.Kaul; Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken, Ph.D.Thesis, Osnabrück, 1985Google Scholar
  28. [Lau]
    C. Lautemann; Efficient algorithms on context-free graph languages, Proc. ICALP '88, LNCS 317, 1988, 362–378Google Scholar
  29. [MaiRoz87]
    M.G. Main, G. Rozenberg; Handle NLC grammars and r.e. languages, JCSS 35 (1987), 192–205Google Scholar
  30. [MaiRoz90]
    M.G. Main, G. Rozenberg; Edge-label controlled graph grammars, JCSS 40 (1990), 188–228. See also [EhrNagRozRos], 411–426Google Scholar
  31. [MezWri]
    J. Mezei, J.B. Wright; Algebraic automata and context-free sets, Inform. Contr. 11 (1967), 3–29CrossRefGoogle Scholar
  32. [MonRos]
    U.Montanari, F.Rossi; An efficient algorithm for the solution of hierarchical networks of constraints, in [EhrNagRozRos], 440–457Google Scholar
  33. [Nag]
    M. Nagl, "Graph-grammatiken", Vieweg, Braunschweig, 1979Google Scholar
  34. [RozWel]
    G. Rozenberg, E. Welzl; Boundary NLC graph grammars — basic definitions, normal forms, and complexity, Inform. Contr. 69 (1986), 136–167CrossRefGoogle Scholar
  35. [Sch]
    R.Schuster; Graphgrammatiken und Grapheinbettungen: Algorithmen und Komplexität, Ph.D.Thesis, Report MIP-8711, Passau, 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Bruno Courcelle
    • 1
  • Joost Engelfriet
    • 2
  • Grzegorz Rozenberg
    • 2
  1. 1.LaBRI, Université de Bordeaux 1TalenceFrance
  2. 2.Department of Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations