An application of graph grammars to the elimination of redundancy from functions defined by schemes

  • Didier Caucal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)


The infinite tree obtained classically by unfolding the definition of a recursive scheme, contains several identical subtrees. When they are identified, the resulting graph is generated by a deterministic graph grammar, if the scheme is monadic. We show how to extract one such a grammar from the scheme.


recursive program scheme context-free grammar deterministic graph grammar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ba-Be Kl 87.
    J.C.M. Baeten, J.A. Bergstra, J.W. Klop Decidability of bisimulation equivalence for processes generating context-free languages, LNCS 259, p. 94–111, 1987.Google Scholar
  2. Ba-Ee-Gl Ke-Pl-Sl 87.
    H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plesmeijer, M.R. Sleep Term graph rewriting, LNCS 259, p. 141–158, 1987.Google Scholar
  3. Ba 89.
    M. Bauderon On systems of equations defining infinite graphs, LNCS 344, p. 54–73, 1989.Google Scholar
  4. Bü 64.
    R. Büchi Regular canonical systems, Archiv für Mathematische Logik und Grundlagenforschung 6, p. 91–111, 1964.CrossRefGoogle Scholar
  5. Ca 89.
    D. Caucal A fast algorithm to decide on simple grammars equivalence, LNCS 401, p. 66–85, 1989.Google Scholar
  6. Ca 90.
    D. Caucal On the regular structure of prefix rewritings, LNCS 431, p. 87–102, 1990.Google Scholar
  7. Ca-Mo 90.
    D. Caucal, R. Monfort On the transition graphs of automata and grammars, WG 90, to appear in LNCS, 1990.Google Scholar
  8. Co 74.
    B. Courcelle Une forme canonique pour les grammaires simples déterministes, Rairo 1, p. 19–36, 1974.Google Scholar
  9. Co 83.
    B. Courcelle Fundamental properties of infinite trees, TCS 25, p. 95–169, 1983.CrossRefGoogle Scholar
  10. Co 89 a.
    B. Courcelle The monadic second-order logic of graphs, II: infinite graphs of bounded width, Math. Syst. Theory 21, p. 187–222, 1989.CrossRefGoogle Scholar
  11. Co 89 b.
    B. Courcelle The definability of equational graphs in monadic second order logic, LNCS 372, p. 207–221, 1989.Google Scholar
  12. Co-Vu 76.
    B. Courcelle, J. Vuillemin Completeness result for the equivalence of recursive schemes, JCSS 12, p. 179–197, 1976.Google Scholar
  13. Ga-Lu 73.
    S. Garland, D. Luckam Program schemes, recursion schemes, and formal languages, JACM 7, p. 119–160, 1973.Google Scholar
  14. Gu 81.
    I. Guessarian Algebraic semantics, LNCS 79, 1981.Google Scholar
  15. Ha-Kr 87.
    A. Habel, H.J. Kreowski Some structural aspects of hypergraph languages generated by hyperedge replacement, LNCS 247, p. 207–219, 1987.Google Scholar
  16. Ho-Pl 88.
    B. Hoffmann, D. Plump Jungle evaluation for efficient term rewriting, LNCS 343, p. 191–203, 1988.Google Scholar
  17. Ia 60.
    Ianov The logical schemes of algorithms, Problems of cybernetic, USSR, p. 82–140, 1960.Google Scholar
  18. Ke 88.
    R. Kennaway On ‘on graph rewritings', TCS 52, p. 37–58, 1988.CrossRefGoogle Scholar
  19. Mu-Sc 85.
    D. Muller, P. Schupp The theory of ends, pushdown automata, and second order logic, TCS 37, p. 51–75, 1985.CrossRefGoogle Scholar
  20. Ni 75.
    M. Nivat On the interpretation of polyadic recursive schemes, Symposia Mathematica 15, Academic Press, 1975.Google Scholar
  21. Pa 82.
    P. Padawitz Graph grammars and operational semantics, TCS 19, p. 117–141, 1982.CrossRefGoogle Scholar
  22. Ra 84.
    J.-C. Raoult On graph rewritings, TCS 32, p. 1–24, 1984.CrossRefGoogle Scholar
  23. St 80.
    J. Staples Computation on graph-like expressions, TCS 10, p. 171–185, 1980.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Didier Caucal
    • 1
  1. 1.IRISA, Campus de BeaulieuRennes CedexFrance

Personalised recommendations