Advertisement

Layout graph grammars: The placement approach

  • Franz J. Brandenburg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)

Abstract

Layout graph grammars are extensions of context-free graph grammars and are introduced as a tool for syntax directed constructions of graph layouts. The constructions are based on a layout specification of the productions, which are consistently transferred to the derivations. The layout specification consists of rules for a placement of the vertices and a partial routing of the edges. It specifies minimal distances between the vertices in X- or Y-dimension. These distances can be optimized according to some formal cost measures.

There is a very intuitive visual representation of the layout specifications, which stems from an elegant graphic representation of the graph grammar productions. Alternatively, the layout specifications are expressed in graph theoretic terms, and so are completely integrated into usual graph grammars.

The computation of optimal layouts of graphs is a well-known NP-complete problem, even for binary trees. Therefore, we design layout graph grammars which guarantee polynomial time constructions of optimal layouts of graphs. This is achieved by the restriction to polynomial graph grammars and layout specifications, which can be computed efficiently by an attributation technique. Hence, layout graph grammars are a new and powerful tool for efficient solutions of graph layout problems. They help jumping accross the NP-completeness barrier.

Keywords

graphs graph grammars graph layout VLSI placement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.N. Bhatt, S. S. Cosmadakis, ”The complexity of minimizing wire lengths in VLSI layouts”, Inform. Proc. Letters 25 (1987), 263–267CrossRefGoogle Scholar
  2. [2]
    F.J. Brandenburg, ”On polynomial time graph grammars” Lecture Notes in Computer Science 294 (1988), 227–236Google Scholar
  3. [3]
    F.J. Brandenburg, ”On the complexity of optimal drawings of graphs” Lecture Notes in Computer Science 411 (1990), 166–180Google Scholar
  4. [4]
    H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld (Eds.), ”Graph Grammars and Their Application to Computer Science”, Lecture Notes in Computer Science 291 (1987)Google Scholar
  5. [5]
    S. Even, ”Graph Algorithms”, Computer Science Press (1979)Google Scholar
  6. [6]
    M.J. Fischer, M.S. Paterson, ”Optimal tree layout”, Proc. 12 ACM STOC (1980), 177–189Google Scholar
  7. [7]
    M.R. Garey, D.S. Johnson, ”Computers and Intractability: a Guide to the Theory of NP-Completeness”, Freeman and Company, San Francisco (1979)Google Scholar
  8. [8]
    A. Gregori, ”Unit-Length embedding of binary trees on a square grid” Inform. Proc. Letters 31 (1989), 167–173CrossRefGoogle Scholar
  9. [9]
    D. Janssens, G. Rozenberg, ”On the structure of node label controlled graph languages”, Inform. Sci. 20 (1980), 191–216CrossRefGoogle Scholar
  10. [10]
    D. S. Johnson, ”The NP-completeness column: An ongoing guide” J. Algorithms 3 (1982), 89–99CrossRefGoogle Scholar
  11. [11]
    M. Kaul, ”Practical Applications of Precedence Graph Grammars” Lecture Notes in Computer Science 291 (1987), 326–342Google Scholar
  12. [12]
    M. Kaul, ”Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken” Ph. D. Thesis and MIP-Bericht Universität Passau (1986).Google Scholar
  13. [13]
    Z. Miller, J.B. Orlin, ”NP-completeness for minimizing maximum edge length in grid embeddings”, J. Algorithms 6 (1985), 10–16CrossRefGoogle Scholar
  14. [14]
    G. Rozenberg, E. Welzl, ”Boundary NLC graph grammars — basic definitions, nornal forms and complexity”, Inform. Contr. 69 (1986), 136–137CrossRefGoogle Scholar
  15. [15]
    R. Schuster, ”Graph Grammatiken und Graph Einbettungen: Algorithmen und Komplexität”, Ph.D Thesis and MIP Bericht, Universität Passau (1987)Google Scholar
  16. [16]
    A.O. Slisenko, ”Context-free grammars as a tool for describing polynomial-time subclasses of hard problems”, Inform. Proc. Letters 14 (1982), 52–56CrossRefGoogle Scholar
  17. [17]
    J. D. Ullman, ”Computational Aspects of VLSI”, Computer Science Press (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Franz J. Brandenburg
    • 1
  1. 1.Lehrstuhl für InformatikUniversity of PassauPassauGermany

Personalised recommendations