Describing Göttler's operational graph grammars with pushouts

  • Klaus Barthelmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)


We shall show how the kind of graph grammars invented by Göttler [8, 9, 10] can be defined in categorical terms. Derivations can then be carried out in the framework of [6]. This translation enables us to review the definitions which were given with implementations in mind. Furthermore it may suggest a way to add expressive power to the algebraic approach. And, hopefully, some theorems carry over between the algebraic approach and special cases (notably NLC [12, 16] or NCE graph grammars [13]) of the operational graph grammars considered in this paper.


CR-classification: S.4.2 grammars and rewriting systems additional keywords: graph grammars 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Barthelmann. Graphgrammatikalische Hilfsmittel zur Beschreibung verteilter Systeme. Dissertation, IMMD2, Universität Erlangen-Nürnberg, 1990 (to appear).Google Scholar
  2. [2]
    P. Böhm, H.-R. Fonio, and A. Habel. Amalgamation of graph transformations with applications to synchronization. In TAPSOFT, volume 185, pages 267–283, 1985.Google Scholar
  3. [3]
    P. Böhm, H.-R. Fonio, and A. Habel. Amalgamation of graph transformations: A synchronization mechanism. Journal of Computer and System Sciences, 34:377–408, 1987.CrossRefGoogle Scholar
  4. [4]
    H. Ehrig. Introduction to the algebraic theory of graph grammars. Lecture Notes in Computer Science, 73:1–69, 1979.Google Scholar
  5. [5]
    H. Ehrig. Tutorial introduction to the algebraic approach of graph grammars. Lecture Notes in Computer Science, 291:3–14, 1987.Google Scholar
  6. [6]
    H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: An algebraic approach. In Proc. of the IEEE Conf. on Automata and Switching Theory, Iowa City, pages 167–180, 1973.Google Scholar
  7. [7]
    H. Ehrig and B. K. Rosen. Parallelism and concurrency of graph manipulations. Theoretical Computer Science, 11:247–275, 1980.CrossRefGoogle Scholar
  8. [8]
    H. Göttler. Zweistufige Graphmanipulationssysteme für die Semantik von Programmiersprachen. Arbeitsbericht (Dissertation) 10, 12, IMMD2, Universität Erlangen-Nürnberg, 1977.Google Scholar
  9. [9]
    H. Göttler. Semantical description by two-level graph-grammars for quasihierarchical graphs. In Proc. WG78 ‘Graphs, Data Structures, Algorithms'. Hanser-Verlag, 1979.Google Scholar
  10. [10]
    H. Göttler. Graphgrammatiken in der Softwaretechnik (Theorie und Anwendungen). Springer-Verlag, 1988.Google Scholar
  11. [11]
    L. Hess and B. H. Mayoh. Graph grammars for knowledge representation. DAIMI PB — 304, Computer Science Department, Aarhus University, 1990.Google Scholar
  12. [12]
    D. Janssens and G. Rozenberg. On the structure of node-label controlled graph languages and restrictions, extensions and variations of NLC grammars. Information Sciences, 20:191–244, 1980.CrossRefGoogle Scholar
  13. [13]
    D. Janssens and G. Rozenberg. Graph grammars with neighbourhood-controlled embedding. Theoretical Computer Science, 21:55–74, 1982.CrossRefGoogle Scholar
  14. [14]
    M. Nagl. Formale Sprachen von markierten Graphen. Arbeitsbericht (Dissertation) 7, 4, IMMD2, Universität Erlangen-Nürnberg, 1974.Google Scholar
  15. [15]
    M. Nagl. Graph-Grammatiken (Theorie, Implementierung, Anwendungen). Vieweg-Verlag, 1979. Habilitation.Google Scholar
  16. [16]
    G. Rozenberg. An introduction to the NLC way of rewriting graphs. Lecture Notes in Computer Science, 291:55–66, 1987.Google Scholar
  17. [17]
    D. E. Rydeheard and R. M. Burstall. Computational Category Theory. Prentice-Hall, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Klaus Barthelmann
    • 1
  1. 1.FB Mathematik (Informatik)Joh.-Gutenberg-UniversitätMainzGermany

Personalised recommendations