Advertisement

Graph grammars based on node rewriting: an introduction to NLC graph grammars

  • Joost Engelfriet
  • Grzegorz Rozenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)

Abstract

An elementary introduction to the notion of an NLC graph grammar is given, and several of its extensions and variations are discussed in a systematic way. Simple concepts are considered rather than technical details.

Keywords

graph grammar node rewriting node label controlled 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AER]
    IJ.J. Aalbersberg, J. Engelfriet, G. Rozenberg; The complexity of regular DNLC graph languages, JCSS 40 (1990), 376–404Google Scholar
  2. [AR]
    IJ.J. Aalbersberg, G. Rozenberg; Traces, dependency graphs and DNLC grammars, Discrete Appl. Math. 11 (1985), 299–306CrossRefGoogle Scholar
  3. [ARE]
    IJ.J. Aalbersberg, G. Rozenberg, A. Ehrenfeucht; On the membership problem for regular DNLC grammars, Discrete Appl. Math. 13 (1986), 79–85CrossRefGoogle Scholar
  4. [Bral]
    F.J. Brandenburg; On partially ordered graph grammars, in 99–111Google Scholar
  5. [Bra2]
    F.J.Brandenburg; On polynomial time graph grammars, Proc. STACS 88, Lecture Notes in Computer Science 294, Springer-verlag, Berlin, 227–236Google Scholar
  6. [Cou]
    B. Courcelle; An axiomatic definition of context-free rewriting and its application to NLC graph grammars, Theor. Comput. Sci. 55 (1987), 141–181CrossRefGoogle Scholar
  7. [CER]
    B.Courcelle, J.Engelfriet, G.Rozenberg; Context-free handle-rewriting hypergraph grammars, this VolumeGoogle Scholar
  8. [EMR]
    A. Ehrenfeucht, M.G. Main, G. Rozenberg; Restrictions on NLC graph grammars, Theor. Comput. Sci. 31 (1984), 211–223CrossRefGoogle Scholar
  9. [EJKR]
    H.Ehrig, D.Janssens, H.-J.Kreowski, G.Rozenberg; Concurrency of node-label controlled graph transformations, Report 82-38, University of Antwerp, U.I.A., 1982Google Scholar
  10. [ENRR]
    H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld (eds.); "Graph-Grammars and their Application to Computer Science", Lecture Notes in Computer Science 291, Springer-Verlag, Berlin, 1987Google Scholar
  11. [Engl]
    J. Engelfriet; Context-free NCE graph grammars, Proc. FCT '89, Lecture Notes in Computer Science 380, Springer-Verlag, Berlin, 1989, 148–161Google Scholar
  12. [Eng2]
    J.Engelfriet; A characterization of context-free NCE graph languages by monadic second-order logic on trees, this VolumeGoogle Scholar
  13. [EL1]
    J. Engelfriet, G. Leih; Nonterminal bounded NLC graph grammars, Theor. Comput. Sci. 59 (1988), 309–315CrossRefGoogle Scholar
  14. [EL2]
    J. Engelfriet, G. Leih; Linear graph grammars: power and complexity, Inform. and Comput. 81 (1989), 88–121CrossRefGoogle Scholar
  15. [EL3]
    J. Engelfriet, G. Leih; Complexity of boundary graph languages, RAIRO Theoretical Informatics and Applications 24 (1990), 267–274Google Scholar
  16. [ELR1]
    J. Engelfriet, G. Leih, G. Rozenberg; Apex graph grammars and attribute grammars, Acta Informatica 25 (1988), 537–571Google Scholar
  17. [ELR2]
    J.Engelfriet, G.Leih, G.Rozenberg; Nonterminal separation in graph grammars, Report 88-29, Leiden University; to appear in Theor. Comput. Sci.Google Scholar
  18. [ELW]
    J. Engelfriet, G. Leih, E. Welzl; Boundary graph grammars with dynamic edge relabeling, JCSS 40 (1990), 307–345Google Scholar
  19. [ER]
    J. Engelfriet, G. Rozenberg; A comparison of boundary graph grammars and context-free hypergraph grammars, Inform. and Comput. 84 (1990), 163–206CrossRefGoogle Scholar
  20. [GJRT]
    H.J. Genrich, D. Janssens, G. Rozenberg, P.S. Thiagarajan; Generalized handle grammars and their relation to Petri nets, EIK 4 (1984), 179–206Google Scholar
  21. [HM]
    J. Hoffmann, M.G. Main; Results on NLC grammars with one-letter terminal alphabets, Theor. Comput. Sci. 73 (1990), 279–294CrossRefGoogle Scholar
  22. [JR1]
    D. Janssens, G. Rozenberg; On the structure of node-label-controlled graph languages, Information Sciences 20 (1980), 191–216CrossRefGoogle Scholar
  23. [JR2]
    D. Janssens, G. Rozenberg; Restrictions, extensions, and variations of NLC grammars, Information Sciences 20 (1980), 217–244CrossRefGoogle Scholar
  24. [JR3]
    D. Janssens, G. Rozenberg; Decision problems for node label controlled graph grammars, JCSS 22 (1981), 144–177Google Scholar
  25. [JR4]
    D. Janssens, G. Rozenberg; A characterization of context-free string languages by directed node-label controlled graph grammars, Acta Informatica 16 (1981), 63–85CrossRefGoogle Scholar
  26. [JR5]
    D. Janssens, G. Rozenberg; Graph grammars with neighbourhood-controlled embedding, Theor. Comput. Sci. 21 (1982), 55–74CrossRefGoogle Scholar
  27. [JR6]
    D. Janssens, G. Rozenberg; Neighborhood-uniform NLC grammars, Computer Vision, Graphics, and Image Processing 35 (1986), 131–151Google Scholar
  28. [JRV]
    D. Janssens, G. Rozenberg, R. Verraedt; On sequential and parallel node-rewriting graph grammars, Computer Graphics and Image Processing 18 (1982), 279–304CrossRefGoogle Scholar
  29. [JRW]
    D. Janssens, G. Rozenberg, E. Welzl; The bounded degree problem for NLC grammars is decidable, JCSS 33 (1986), 415–422Google Scholar
  30. [Jef]
    J. Jeffs; Embedding rule independent theory of graph grammars, in 299–308Google Scholar
  31. [Kau1]
    M.Kaul; "Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken", Dissertation, Universität Osnabrück, 1985Google Scholar
  32. [Kau2]
    M. Kaul; Practical applications of precedence graph grammars, in 326–342Google Scholar
  33. [KR]
    H.-J. Kreowski, G. Rozenberg; Note on node-rewriting graph grammars, Inf. Proc. Letters 18 (1984), 21–24CrossRefGoogle Scholar
  34. [MR1]
    M.G. Main, G. Rozenberg; Handle NLC grammars and r.e. languages, JCSS 35 (1987), 192–205Google Scholar
  35. [MR2]
    M.G. Main, G. Rozenberg; Edge-label controlled graph grammars, JCSS 40 (1990), 188–228Google Scholar
  36. [RW1]
    G. Rozenberg, E. Welzl; Boundary NLC graph grammars — basic definitions, normal forms, and complexity, Inform. and Control 69 (1986), 136–167CrossRefGoogle Scholar
  37. [RW2]
    G. Rozenberg, E. Welzl; Graph theoretic closure properties of the family of boundary NLC graph languages, Acta Informatica 23 (1986), 289–309CrossRefGoogle Scholar
  38. [RW3]
    G. Rozenberg, E. Welzl; Combinatorial properties of boundary NLC graph languages, Discrete Appl. Math. 16 (1987), 59–73CrossRefGoogle Scholar
  39. [Sch]
    R.Schuster; Graphgrammatiken und Grapheinbettungen: Algorithmen und Komplexität, Report MIP-8711, Passau, 1987Google Scholar
  40. [Vog]
    W. Vogler; On hyperedge replacement and BNLC graph grammars, in Graph-Theoretic Concepts in Computer Science WG '89, Lecture Notes in Computer Science 411, Springer-Verlag, Berlin, 78–93Google Scholar
  41. [Well]
    E. Welzl; Boundary NLC and partition controlled graph grammars, in 593–609Google Scholar
  42. [Wel2]
    E. Welzl; On the set of all subgraphs of the graphs in a boundary NLC graph language, in "The Book of L" (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, 1986, 445–459Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Grzegorz Rozenberg
    • 1
  1. 1.Department of Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations