Advertisement

A note on hyperedge replacement

  • Frank Drewes
  • Hans-Jörg Kreowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 532)

Abstract

In this note, we recall the basic features of hyperedge replacement as one of the most elementary and frequently used concepts of graph rewriting. Moreover, we discuss the Contextfreeness Lemma for derivations in hyperedge-replacement grammars.

Keywords

hyperedge replacement contextfreeness bounded treewidth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ALS 88]
    S. Arnborg, J. Lagergren, D. Seese: Which problems are easy for tree-decomposable graphs? Lecture Notes in Computer Science 317, 38–51, 1988.Google Scholar
  2. [Arn 85]
    S. Arnborg: Efficient algorithms for combinatorial problems on graphs with bounded decomposability — a survey. BIT 25, 2–23, 1985.CrossRefGoogle Scholar
  3. [BC 87]
    M. Bauderon, B. Courcelle: Graph expressions and graph rewriting. Mathematical Systems Theory 20, 83–127, 1987.CrossRefGoogle Scholar
  4. [Bod 86]
    H. L. Bodlaender: Classes of graphs with bounded tree-width. Report RUU-CS-86-22, Rijskuniversiteit Utrecht, vakgroep informatica, 1986.Google Scholar
  5. [Bod 88a]
    H. L. Bodlaender: Dynamic programming on graphs with bonded tree-width. Lecture Notes in Computer Science 317, 105–118, 1988.Google Scholar
  6. [Bod 88b]
    H. L. Bodlaender: NC-algorithms for graphs with small tree-width. Report RUU-CS-88-4, Rijskuniversiteit Utrecht, vakgroep informatica, 1988.Google Scholar
  7. [Cou 87a]
    B. Courcelle: On context-free sets of graphs and their monadic second-order theory. Lecture Notes in Computer Science 291, 133–146, 1987.Google Scholar
  8. [Cou 87b]
    B. Courcelle: A representation of graphs by algebraic expressions and its use for graph rewriting systems. Lecture Notes in Computer Science 291, 112–132, 1987.Google Scholar
  9. [Cou 88]
    B. Courcelle: The monadic second-order logic of graphs, III: tree-width, forbidden minors and complexity issues. Preprint, Université Bordeaux 1, 1988.Google Scholar
  10. [Fed 71]
    J. Feder: Plex languages. Information Science 3, 225–241, 1971.CrossRefGoogle Scholar
  11. [Hab 89]
    A. Habel: Hyperedge Replacement: Grammars and Languages. Dissertation, Univ. Bremen, 1989.Google Scholar
  12. [HK 87a]
    A. Habel, H.-J. Kreowski: Characteristics of graph languages generated by edge replacement. Theoretical Computer Science 51, 81–115, 1987.CrossRefGoogle Scholar
  13. [HK 87b]
    A. Habel, H.-J. Kreowski: May we introduce to you: hyperedge replacement. Lecture Notes in Computer Science 291, 15–26, 1987.Google Scholar
  14. [HK 87c]
    A. Habel, H.-J. Kreowski: Some structural aspects of hypergraph languages generated by hyperedge replacement. Lecture Notes in Computer Science 247, 207–219, 1987.Google Scholar
  15. [HKV 89a]
    A. Habel, H.-J. Kreowski, W. Vogler: Decidable boundedness problems for hyperedge replacement graph grammars. Lecture Notes in Computer Science 351, 275–289, 1989. Proc. TAPSOFT 89.Google Scholar
  16. [HKV 89b]
    A. Habel, H.-J. Kreowski, W. Vogler: Metatheorems for decision problems on hyperedge replacement graph languages. Acta Informatica 26, 657–677, 1989.CrossRefGoogle Scholar
  17. [Kre 79]
    H.-J. Kreowski: A pumping lemma for context-free graph languages. Lecture Notes in Computer Science 73, 270–283, 1979.Google Scholar
  18. [Lau 88]
    C. Lautemann: Decomposition trees: structured graph representation and efficient algorithms. Lecture Notes in Computer Science 299, 28–39, 1988. Proc. CAAP 88.Google Scholar
  19. [Lau 90]
    C. Lautemann: The complexity of graph languages generated by hyperedge replacement. Acta Informatica 27, 399–421, 1990.CrossRefGoogle Scholar
  20. [LW 88]
    T. Lengauer, E. Wanke: Efficient analysis of graph properties on context-free graph languages. Lecture Notes in Computer Science 317, 379–393, 1988.Google Scholar
  21. [Pav 72]
    T. Pavlidis: Linear and context-free graph grammars. Journal of the ACM 19(1), 11–23, 1972.CrossRefGoogle Scholar
  22. [RS 86]
    N. Robertson, P.D. Seymour: Graph minors II. Algorithmic aspects of tree width. Journal of Algorithms 7, 309–322, 1986.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Frank Drewes
    • 1
  • Hans-Jörg Kreowski
    • 1
  1. 1.Fachbereich Mathematik und InformatikUniversität BremenBremen

Personalised recommendations