Recursion and complexity theory on CPO-S

  • Klaus Weihrauch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 104)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Scott, Outline of a mathematical theory of computation, Technical Monograph PRG-2, Nov. 1970, Oxford University Computing Laboratory.Google Scholar
  2. [2]
    H. Egli, R.L. Constable, Computability concepts for programming language semantics, Theoretical Computer Science 2 (1976) 133–145.CrossRefGoogle Scholar
  3. [3]
    M.B. Smyth, Effectively given domains, Theoretical Computer Science 5 (1977) 257–274.CrossRefGoogle Scholar
  4. [4]
    A. Kanda, D. Park, When are two effectively given domains identical, in: K. Weihrauch (Hrsg.), Theoretical Computer Science 4th GI-Conference, S. 170–181, Springer, Berlin 1979.Google Scholar
  5. [5]
    E. Sciore, A. Tang, Admissible coherent c.p.o.'s, in: Automata, Languages and Programming, 5th Colloquium, 1978, Lecture notes in Computer Science 62, Springer, Berlin 1978.Google Scholar
  6. [6]
    M. Blum, A machine-independent theory of the complexity of recursive functions, J. ACM 14 (1967) 322–336.CrossRefGoogle Scholar
  7. [7]
    H. Rogers, Gödel numberings of partial recursive functions, Journal of Symbolic Logic 23 (1958) 331–341.Google Scholar
  8. [8]
    U. Schreiber, K. Weihrauch, Embedding metric spaces into cpo-s, to appear in Theoretical Computer Science.Google Scholar
  9. [9]
    H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York 1967.Google Scholar
  10. [10]
    J.L. Ersov, Theorie der Numerierungen I, Zeitschr. f. math. Logik und Grundlagen d. Math. 19 (1973) 289–388.Google Scholar
  11. [11]
    K. Weihrauch, T. Deil, Berechenbarkeit auf cpo-s, Informatik Berichte, RWTH Aachen, 1980 (to appear).Google Scholar
  12. [12]
    O. Aberth, Computable Analysis, McGraw-Hill, New York, 1980.Google Scholar
  13. [13]
    K. Weihrauch, Rekursionstheorie und Komplexitätstheorie auf effektiven cpo-s, Informatik-Berichte Nr. 9, Fernuniversität Hagen, 1980.Google Scholar
  14. [14]
    A. Borodin, Complexity classes of recursive functions and the existence of complexity gaps, Conf. Rec. ACM Symp. on Theory of Computing (1969) 67–78.Google Scholar
  15. [15]
    E. Specker, Nicht konstruktiv beweisbare Sätze der Analysis, J. Symbolic Logic 14 (1949) 145–158.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Klaus Weihrauch
    • 1
  1. 1.Fernuniversität Gesamthochschule Fachbereich Mathematik Lehrgebiet Informatik Theoretische InformatikHagen 1

Personalised recommendations