Advertisement

A decidable property of iterated morphisms

  • J. J. Pansiot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 104)

Abstract

We show that for arbitrary iterated morphisms g and h, one can decide if there exist integers p and q such that gp=hq. To show this result we first prove a similar property of integer matrices : given arbitrary integer matrices A and B one can decide if there exist integers p and q such that Ap=Bq.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BM.
    Berstel J., Mignotte M. (1976), Deux propriétés décidables des suites récurrentes linéaires, Bull. Soc. Math. France 104 p 175–184.Google Scholar
  2. CO.
    Cobham A. (1972), Uniform Tag Sequences, Math. Systems Theory 6 p 164–192.CrossRefGoogle Scholar
  3. CF.
    Culik K., Fris I. (1977), The decidability of the equivalence problem for DOL-Systems, Inf. and Control 35 p 20–39.CrossRefGoogle Scholar
  4. CS.
    Culik K. and Salomaa A. (1980), On infinite words obtained by iterating morphisms, University of Waterloo, Research Report CS 29-80.Google Scholar
  5. N.
    Nielsen M. (1974), On the decidability of some equivalence problems for DOL-Systems, Inf. and Control 25 p 166–193.CrossRefGoogle Scholar
  6. VL.
    Van der Poorten A.J., Loxton J.H. (1977), Multiplicative relations in number fields, Bull. Austral. Math. Soc. 16 p 83–98.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • J. J. Pansiot
    • 1
  1. 1.Centre de Calcul de l'EsplanadeUniversité Louis PasteurStrasbourg CédexFrance

Personalised recommendations