Dynamic k-dimensional multiway search under time-varying access frequencies

  • H. Güting
  • H. P. Kriegel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 104)


We consider multiway search trees for k-dimensional search under time-varying access frequencies. Let S = {kl,...,kn} be a set of k-dimensional keys, k≥1, and let p i t be the number of accesses to ki, also called frequency of ki, up to time t, \(W^t = \sum\limits_{i = 1}^n {p_i^t }\). We present weighted (k+1)B-trees of order d, d≥1, with the following properties:
  1. 1.

    A search for key ki can be performed in time 0(min(n,logd+1Wt/p i t )+(k−1)), i.e. the tree is always nearly optimal.

  2. 2.

    The time for updating after a search is at most proportional to search time.

  3. 3.

    Insertion of a new key with arbitrary frequency as well as deletion of a key with arbitrary frequency can be carried out in time 0(min(n,logd+1Wt)+(k−1)).



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Altenkamp, D. and Mehlhorn, K. (1980), Codes: Unequal probabilities, unequal letter costs, Journal of the ACM 27, 3 (July 1980), 412–427.CrossRefGoogle Scholar
  2. [2]
    Bent, S.W., Sleator, D.D. and Tarjan, R.E. (1980), Biased 2–3 trees, Proc. 21st Annual Symposium on Foundations of Computer Science, 248–254.Google Scholar
  3. [3]
    Güting, H. and Kriegel, H.P. (1980), Multidimensional B-tree: An efficient dynamic file structure for exact match queries, Computer Science Technical Report No. 105, Universität Dortmund, also in: GI — lo. Jahrestagung, Informatik Fachberichte Band 33, 375–388, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  4. [4]
    Knuth, D.E. (1971), Optimum binary search trees, Acta Informatica 1 (1971), 14–25.CrossRefGoogle Scholar
  5. [5]
    Knuth, D.E. (1973), The art of computer programming, Vol. III: Sorting and searching, Addison-Wesley, Reading, MA.Google Scholar
  6. [6]
    Mehlhorn, K. (1978), Arbitrary weight changes in dynamic trees, Bericht 78/04, Fachbereich lo — Informatik, Universität des Saarlandes, Saarbrücken.Google Scholar
  7. [7]
    Mehlhorn, K. (1979), Dynamic binary search, SIAM J. COMPUTING 8,2 (May 1979), 175–198.CrossRefGoogle Scholar
  8. [8]
    Vaishnavi, V.K., Kriegel, H.P. and Wood, D. (1980), Optimum multiway search trees, Acta Informatica 14 (1980), 119–133.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • H. Güting
    • 1
  • H. P. Kriegel
    • 1
  1. 1.Informatik VIUniversitätDortmund 50W.Germany

Personalised recommendations